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1. Introduction

The healthy functioning of the human brain depends on the bal-
anced interaction of its neuronal subsystems. In many serious dis-
orders in which this balance is compromised, there is great need
for remedy. Traditional methods, such as medication, psychother-
apy, or surgery, often work but may be costly, unavailable, or have
undesirable side effects. Transcranial magnetic stimulation (TMS)
is a safe, non-invasive alternative, which is widely used for therapy
with the capability of identifying biomarkers for various brain dis-
orders. However, because of the form factor of the coils, conven-
tional TMS has been limited to stimulating only one site (Kujirai
et al., 1993; Massimini et al., 2005; Pascual-Leone et al., 1994), or
maximally two or three distant locations (Arai et al., 2011;
Ferbert et al., 1992; Hernandez-Pavon et al., 2023; Veniero et al.,
2013), of the brain at a time, restricting its ability to modulate mul-
tiple nodes of spatially distributed brain networks.

Multi-locus transcranial magnetic stimulation (mTMS) is a
groundbreaking technique in which a set of multiple coils, or a coil
array, is used to enable the stimulation of different cortical target
sites without moving the coils (Koponen et al., 2018; Navarro de
Lara et al., 2021; Nieminen et al., 2022). The targeting is based
on firing multiple coils simultaneously, with different pulse combi-
nations stimulating different cortical locations. In practice, mTMS
allows precise electronic shifting and re-orienting of focal electric
fields with field patterns equivalent—but not limited—to those of
conventional TMS coils (Nieminen et al., 2019; Souza et al.,
2022). The stimulation can be aimed at any brain network nodes
within the area determined by the coil array, with freely chosen
time delays between pulses, down to less than a millisecond
(Nieminen et al., 2019; Souza et al., 2021; Tugin et al., 2021). The
operating principle of mTMS is illustrated in Fig. 1.

This technology makes it possible to define spatiotemporal
pulse sequences able to excite multiple nodes of functional net-
works with any desired order and precise timing of the pulses,
replacing the single-locus, predetermined stimulation paradigms
of conventional TMS. Furthermore, we foresee a major paradigm
shift in the possibility of controlling these spatiotemporal
sequences with a closed-loop approach—a computer algorithm
adjusting the treatment or study based on real-time feedback from
electroencephalography (EEG), electromyography (EMG), or other
recordings. We have already demonstrated such closed-loop para-
digms with mTMS in experiments where an algorithm automati-
cally optimizes the stimulation target on the cortex to maximize
muscle or EEG responses (Tervo et al., 2020; 2022). These develop-
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Fig. 1. Illustration of a multi-locus transcranial magnetic stimulation (mTMS) coil
array, the field patterns of the individual coils, and how they can be combined to
electrically manipulate the location and orientation of stimulation. The widths of
the arrows indicating the coil contributions represent the relative strengths of their
electric fields, with colors denoting polarity (orange for positive contribution, blue
for negative). The black box indicates a region of interest under the coil array.

Fig. 2. Targeting of brain networks with multi-locus transcranial magnetic stim-
ulation (mTMS). A) Concurrent stimulation of many brain sites is impossible with a
conventional TMS device, as changing the stimulation target requires repositioning
the coil, which typically takes seconds. With mTMS, the stimulation target can be
electronically shifted in milliseconds. B) Stimulating one node of a brain network
has a limited effect on network behavior. Rapid pulse sequences to multiple nodes
at suitable intervals can modulate how cortical sites communicate with each other.
C) Several brain disorders deteriorate critical communications between brain sites.
One anticipated application of mTMS is to restore damaged connections with
repeated concurrent pulses to connected sites. The thicknesses of the lines between
nodes illustrate connection strengths.
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ments have been spearheaded by the European Research Council
(ERC) Synergy-funded ConnectToBrain project, the ultimate goal
of which is to realize closed-loop full-cortex mTMS stimulation
guided by real-time EEG feedback (Ziemann et al., 2019).

In this article, we describe the working principles and potential
applications of mTMS technology for stimulating brain networks,
promising better treatments to neurological disorders and offering
new opportunities for studying human brain function. The purpose
of this article is to detail our vision of the future of this technology
and its applications, offering a wider context for the development
of specific hardware, software, and stimulation protocols for apply-
ing mTMS in research and clinical treatments.

2. mTMS and brain networks

Abundant evidence exists about structural and functional brain
network alterations in various brain diseases, with pathological
behavior rarely bound to a single cortical site (Cash et al., 2021;
Fornito et al., 2015; Menon, 2011; Siddiqi et al., 2021, 2023;
Siegel et al., 2022). Moreover, with the help of control theory, it
has been shown that the brain as a state-space system is extremely
difficult to control via single-site stimulation (Gu et al., 2015), fur-
ther emphasizing the need for multi-site stimulation for therapeu-
tic applications. Despite this, possibly due to technological
limitations, therapeutic applications are still mostly focused on
single-locus stimulation (Hett et al., 2021; Sciortino et al., 2021).
Some studies have demonstrated superior treatment efficacy when
two sites are stimulated (Fischer et al., 2017); for example,
bilateral TMS has shown higher remission rates in treating older
patients with treatment-resistant depression, compared to sin-
gle-hemisphere TMS (Trevizol et al., 2019). However, the two brain
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sites are generally not stimulated concurrently, as conventional
TMS coils are too bulky to fit close enough to each other for simul-
taneous stimulation.

With the capability of mTMS to rapidly shift the location and
orientation of the induced electric field, we can select a set of con-
nected cortical sites to stimulate near-simultaneously. This allows
us to target brain networks with pulse combinations designed to
facilitate or interfere with cross-site cortical activity (Nieminen
et al., 2019; Souza et al., 2021; Tugin et al., 2021). For example,
pulses could be aimed at two connected brain sites with a precise
time delay coinciding with the natural propagation of signals from
one target to the other. As connections between neurons firing
together grow stronger (Bear et al., 2016; Hebb et al., 1949), con-
current multi-site stimulation could be used to, e.g., rehabilitate
brain networks damaged by stroke. These possibilities are depicted
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in Fig. 2. We expect network-based mTMS therapies to allow
development of new treatments in many network diseases and
increase the efficacy of currently available treatments by enabling
simultaneous stimulation of multiple relevant targets.

For the scientific and clinical communities to fully exploit the
possibilities that mTMS enables, the technology must be conve-
niently accessible for research groups and hospitals. Modular
design in hardware and software lowers the barrier of entry for
adopting the technology by letting users start with a system fea-
turing a small number of stimulation channels and expand to sup-
port larger coil arrays as needed. Modular design facilitates flexible
research in other ways as well: building coil arrays separately from
the power electronics enables swapping in specialized coil sets
designed for particular stimulation modalities without the need
to change anything else in the system. Modular software architec-
ture allows any input signal to be used for controlling when and
where to stimulate, enabling, for example, EEG-controlled closed-
loop stimulation protocols or the use of novel readouts such as a
video feed of the subject to control the stimulation.
3. Implementation of mTMS

3.1. Coil arrays

In mTMS, multiple separate coils with overlapping electric
fields control how the brain is stimulated. The coil-specific electric
fields can be summed together to generate a range of focal stimu-
lation fields (Koponen et al., 2018). Importantly, the location, ori-
entation and other features of these combination fields can be
different from what any of the coils would produce alone. This
allows, for example, smooth 360-degree rotation of the electric
field orientation with a stack of only two coils (Pieramico et al.,
2023; Souza et al., 2022). The range of possibilities increases with
the number of coils: for example, a set of two coils can allow either
rotating the induced electric field or shifting its locus on a straight
line, but not both, whereas a set of five coils can allow shifting the
target location in two dimensions, with arbitrary electric-field ori-
entation (Nieminen et al., 2022).

Additional coils can increase the area in which the position and
orientation of the field can be determined, or provide other fea-
tures such as the ability to change the shape of the induced electric
field. This design flexibility allows for the simultaneous targeting
of nearby ipsilateral cortical nodes, going beyond the capabilities
of conventional TMS devices, which can only stimulate one loca-
tion at a time. As an example, while conventional technology
allows for stimulation of the primary motor cortex, mTMS coil
arrays can be designed to target the ipsilateral supplementary
motor area, dorsal premotor cortex and primary motor cortex
concurrently.

The freedom of designing coil arrays separately from the power
electronics benefits mTMS in unique ways. While for conventional
TMS changing the coil mainly changes the electric field profile, in
mTMS, swapping a set of coils for another allows adjusting how
the stimulation can be controlled. This enables great flexibility,
even with electronics that support simultaneous use of only two
coils. One two-coil array can be designed to allow rotation of the
stimulation field, another can be designed to shift the locus of
the field, and a third to allow altering focality while keeping the
orientation and position fixed (Nurmi et al., 2021). With access
to different coil arrays, even a simple two-channel mTMS platform
enables research with any of these three different modalities of
stimulation control.

While mTMS coil arrays offer great flexibility in stimulation,
they are subject to certain practical considerations. A set compris-
ing five or more coils is cumbersome for an operator to manually
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position on the scalp due to its size and weight. To ensure consis-
tent cortical targeting throughout an experiment, collaborative
robots can be used to position the coil array in the desired location
and automatically compensate for head movements. Additionally,
multi-coil setups are bound by the same limitations as any cus-
tom-designed single coil regarding electric field characteristics,
including the depth of the induced electric field. Thus, mTMS can-
not reach brain sites that cannot be reached with single-coil TMS.
As it has been shown that direct, focal deep-brain stimulation is
impossible with conventional TMS (Deng et al., 2014; Heller and
van Hulsteyn, 1992), it is unattainable with mTMS as well.

A key challenge in mTMS coil array development is the increas-
ing number of coils required to enable a wider range of electric
field control. As the cortical field strength dramatically decreases
with coil distance, the present approach of layering coils on top
of each other (see Fig. 1a) becomes infeasible beyond the current
state-of-the-art five-coil arrays. This could be addressed by fitting
several smaller coils in each layer, or with overlapping windings
using the empty space in adjacent layers to allow wires to cross
over each other.
3.2. Electronics

The core of any TMS device is a power circuit capable of deliv-
ering strong current pulses through the coil winding. An mTMS
device is essentially a set of centrally controlled, independently
operating stimulators, each consisting of a power circuit and a
high-voltage capacitor. Each of these so-called channels drives a
single stimulation coil. As more channels become available, more
versatile coil arrays will be possible. A more elaborate explanation
of the current generation of mTMS electronics can be found in
(Nieminen et al., 2022).

We envision a modular mTMS platform based on a system core
with dedicated slots for channels, to which freely swappable stim-
ulation units, each able to support a single coil, can be attached. A
modular approach in the design of the mTMS system allows great
flexibility, as the system can be expanded gradually to meet the
growing needs. These needs can be, for instance, expanding the tar-
geting region to both hemispheres or the capability to electrically
adjust the shape of the induced electric field during stimulation
sequences.

The mTMS electronics allow generating pulse combinations
that induce a focal electric field at the desired location. To change
the stimulation target within milliseconds, the pulse combination
must be changed equally fast. To this end, an mTMS device exploits
specialized power circuits and the high-frequency switching char-
acteristics of modern semiconductors. This enables rapid changes
in pulse waveforms while allowing their approximate shapes to
be freely defined (Sinisalo et al., 2021; Sorkhabi et al., 2022). These
adjustable waveforms have other benefits as well, such as optimiz-
ing them to minimize coil heating (Wang et al., 2022).

A major challenge in mTMS electronics is sustaining sufficient
stimulation strength in new paradigms delivering stimuli to multi-
ple locations at once at high repetition frequencies. In our state-of-
the-art prototype, each channel requires to be recharged by the
same—rather large—charging unit after each stimulation pulse:
the larger the number of channels, the longer the minimum
inter-pulse interval. Simply adding more charging units, while
viable, greatly increases the bulk of the setup. Furthermore, the
space taken by each individual channel increases with the desired
maximum output. A thorough investigation of the specifications
required is needed to optimize the power delivery and form factor
of the device. As a modular mTMS system is architecturally quite
complex, making the design robust but easily maintainable is yet
another challenge.



H. Sinisalo, I. Rissanen, O.-P. Kahilakoski et al. Clinical Neurophysiology 158 (2024) 218–224
3.3. Software

To make full use of the capabilities of mTMS, sophisticated real-
time algorithms guiding the stimulation are required. To facilitate
the stimulation of brain networks, it is essential to use group-
derived or subject-specific prior information from other modali-
ties, such as functional magnetic resonance imaging (MRI), diffu-
sion MRI, EEG, or magnetoencephalography (MEG) (Antony et al.,
2022; Cash et al., 2021; Luber et al., 2022). The software workflow
should allow convenient, seamless integration and visualization of
such priors, usually with neuronavigation software (Aydogan et al.,
2023; Souza et al., 2018). In this way, these priors can both be used
to drive the automated algorithms and complement the user with
neurophysiological knowledge.

Using multimodal imaging requires the software to support
multiple workflows. To achieve that, it is important to have a mod-
ular software design: functionality can be added based on the
available setup and the requirements of the experiment. This is
superior to a monolithic design, which cannot naturally extend
to initially unplanned use cases, such as use of new algorithms
or reading data from novel instruments. In modular design, a single
bulky control program is replaced with small program components
(Kahilakoski et al., 2021). These components perform specific func-
tions, such as generating stimulation parameters or sending com-
mands to the mTMS device.

In addition to the integration of priors, the software will process
data from other modalities which can be acquired simultaneously
Fig. 3. A schematic diagram of a multi-locus transcranial magnetic stimulation (mTMS) s
stimulation to desired targets, such as the individual nodes of a larger brain netwo
electromyography (EMG) to determine the desired site and timing of stimulation. Target
combinations to best reach the intended targets, while the robotic arm holds the coil ar
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with TMS, such as EEG, EMG, or other electrophysiological mea-
surements. As an example, EEG data can be simultaneously used
for multiple purposes in a closed-loop EEG–TMS experiment. In a
stimulation paradigm in which the subject is exposed to visual
stimuli, EEG can be used to trigger the presentation of the stimulus,
as well as to determine when and where to stimulate. In modular
design, it would be straightforward to add another readout device,
controlled by another self-contained software component, to the
measurement setup. Separate software modules could be responsi-
ble for preprocessing the streaming signals, real-time analysis of
the EEG data, and sending the EEG-guided commands to the mTMS
unit. Fig. 3 shows an example of how this interplay of software and
hardware enables closed-loop mTMS stimulation. Making higher-
level software components, such as algorithms guiding stimulation
targeting based on electrophysiological responses, open source
allows researchers from around the world to add new functionality
as new instruments are developed and breakthroughs are made in
understanding of brain function (Souza et al., 2018). Moreover, this
helps to build a community that helps the software to be tested
and maintained (Gleeson et al., 2017).

3.4. On the safety of mTMS

Due to the simultaneous use of multiple stacked coils to deliver
pulses, mTMS involves certain unique safety considerations. The
impulse noise and heat accumulation per pulse can be much higher
than that of conventional TMS, necessitating stronger hearing pro-
ystem and its components. Software and hardware components cooperate to guide
rk. Software algorithms use readouts such as electroencephalography (EEG) and
ing algorithms utilize electric field modeling to determine the required mTMS pulse
ray in place.



H. Sinisalo, I. Rissanen, O.-P. Kahilakoski et al. Clinical Neurophysiology 158 (2024) 218–224
tection and careful tracking of coil array temperature. Coil designs
(and pulse waveforms) optimized to minimize noise and heating
can also be implemented (Koponen et al., 2021; Sánchez et al.,
2017; Wang et al., 2022). Power electronics failures resulting in
unintentional pulses may cause stronger adverse effects than in
conventional TMS due to the possibility of firing several coils at
maximum strength simultaneously, necessitating robust hardware
and software design.

The capacity to stimulate multiple cortical sites at the same
time, especially in an algorithmically controlled closed-loop para-
digm, raises new questions on electric field dosage limits (Rossi
et al., 2009, 2021). If the paradigm features no fixed frequency,
intensity, or target sites, but rather determines these from real-
time feedback, how should dosage be defined? When stimulating
multiple sites, should the limit depend on the connectivity of the
targeted regions? Could the limits be determined based on induced
brain activity rather than induced electric field distributions? To
ensure safety in machine-controlled multi-locus paradigms, appro-
priate dosage restrictions must be determined and integrated into
the core software to prevent user-designed algorithms from going
berserk and exposing the brain to excessive stimulation.
4. Novel applications

The ability to electronically control the location, orientation,
timing, and intensity of the stimulation opens new possibilities
for brain research and treatment. For instance, a common applica-
tion of conventional TMS is pre-surgical mapping (Krieg, 2017;
Lefaucheur and Picht, 2016; Picht et al., 2009; Vitikainen et al.,
2009), which involves dense sampling of TMS-evoked responses
within a cortical region of interest. mTMS allows creation of fully
automatic and standardized mapping protocols, yielding more
consistent and accurate priors for neurosurgical operations with-
out user dependency. Similar procedures can be used to create per-
sonalized treatment protocols for brain disorders. For example,
mTMS–EEG could be used to detect potential therapeutic targets
for stroke patients, based on the local cortical reactivity patterns
(Sarasso et al., 2020). While stimulation directly over the lesion
does not produce TMS-evoked potentials, simple sleep-like evoked
responses (Massimini et al., 2005) are observed in perilesional
areas, where disrupted function can potentially be restored. Con-
current stimulation can be applied to such targets to strengthen
surviving connections by having the neurons fire in synchrony
(Bear et al., 2016; Hebb, 1949), a process currently utilized in cor-
ticocortical paired associative stimulation (ccPAS) protocols
(Hernandez-Pavon et al., 2023). However, with conventional TMS
the use of ccPAS is restricted to distant brain areas due to the size
of the coils. This limitation is removed with mTMS, allowing the
simultaneous activation of neighboring cortical targets with high
precision.

Personalization of treatment approaches are further facilitated
by closed-loop mTMS protocols. By steering mTMS based on the
real-time responses from the patient, we can automatically find
stimulation targets and paradigms that best elicit desired
responses from individual subjects (Lioumis and Rosanova,
2022). For instance, the cortical hotspot and optimal stimulus ori-
entation can be automatically optimized based on EMG and EEG
feedback (Tervo et al., 2020, 2022). The utility of the real-time
tracking of TMS–EEG responses does not stop at the spatial local-
ization of the cortical target, but also allows timing of the stimula-
tion according to properties of brain activity such as the phase of
the oscillation (Rosanova et al., 2009). For instance, stimulation
time-locked to the phase of the mu-rhythm in the motor cortex
has been shown to produce long-term changes in corticospinal
excitability (Zrenner et al., 2018), while the phase of the prefrontal
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alpha oscillation may govern the excitatory versus inhibitory effect
of TMS in certain brain networks (Pantazatos et al., 2023).

A closed-loop approach also holds significant promise for
improving paired-pulse treatment protocols such as ccPAS, the
clinical effect of which depends on relative timing of the pulses
(Arai et al, 2011; Hernandez-Pavon et al, 2023; Koganemaru
et al, 2009), by optimizing the interstimulus interval based on
immediate EEG or EMG feedback. Furthermore, real-time EEGmea-
surements of distant cortical activity, i.e., large-scale brain states,
can be taken into account to time stimulation to coincide with
specific brain activity patterns of interest (Marzetti et al., 2024;
Rösch et al., 2024). The ability of mTMS to target even adjacent cor-
tical regions with millisecond precision based on real-time feed-
back opens myriad possibilities for closed-loop optimization of
pulse sequences for excitation or inhibition of specific neural cir-
cuits for personalized network-based therapy.

With conventional TMS, the electric field spreads evenly around
the locus, making it difficult, if not impossible, to avoid significant
stimulation of neighboring sites. As the mTMS stimulation field is
adjustable, we can shape the field to excite a particular region
while avoiding a critical neighboring target. To benefit from this
advancement, we need to be able to precisely localize the regions
of interest. It can be done by integration of priors derived from var-
ious neuroimaging modalities, such as functional and diffusion
MRI, positron emission tomography (PET), and MEG. The benefit
of using functional MRI priors for target selection have been
repeatedly demonstrated for the major depressive disorder (Cash
et al., 2021; Siddiqi et al., 2023a, 2023b) and is already being
implemented into clinical practice in novel rTMS protocols
approved by the U.S. Food and Drug Administration (FDA) (Cole
et al., 2022). And while mTMS technology does not allow direct
focal activation of deep brain structures, precise spatiotemporal
multi-site stimulation guided by tractography shows potential
for strong indirect stimulation of subcortical nodes of a brain net-
work—an unprecedented opportunity for treating conditions
involving deeper structures (Chen et al., 2022; Luber et al., 2022;
Palesi et al., 2015).

mTMS technology enables the development and testing of mul-
titudes of treatment protocols that were previously unfeasible. As
our ability to understand and identify brain networks and their
states expands, the multilocus approach will allow us to detect
exactly when and where to stimulate an individual in order to best
facilitate a shift towards physiological brain states.
5. Concluding remarks

This concept paper, together with three other such publications
(Marzetti et al., 2024; Rösch et al., 2024; Humaidan et al., 2024),
highlights the direction of technical development in the ERC Syn-
ergy project ConnectToBrain. We aim to realize algorithm-driven
closed-loop multi-locus TMS, capable of modulating brain net-
works via concurrent stimulation of the network nodes anywhere
on the cortex. This paper describes the fundamental principles of
mTMS and its application for brain network stimulation—a para-
digm shift from the single-target approach of conventional TMS
into connectivity-based methodology.

This revolutionary technology opens new avenues to visionary
exploration of cortical networks, as well as enhanced, multi-site
treatment protocols for the diversity of brain disorders. The capa-
bility to shift stimulation targets at millisecond scale enables ver-
satile coupling to brain network activity, a feat unattainable with
conventional TMS. Modular design facilitates development of spe-
cialized protocols for an expanding variety of use-cases, allowing
hardware and software components designed for particular tasks
to be seamlessly integrated to the system as required. Such proto-
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cols could, e.g., algorithmically guide stimulation with real-time
EEG feedback (Tervo et al., 2022; Zrenner et al., 2018) or with
real-time computation of anatomical connections (Aydogan et al.,
2023) for personalized treatment modalities. These advances are
crucial steps towards our vision of algorithmically-controlled mod-
ulation of brain networks with TMS.
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