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1. Closing the loop on stroke therapy

Stroke is a leading cause of disability in adults (Feigin et al.,
2022; Katan and Luft, 2018), affecting cognitive, language, or motor
functions (Langhorne et al., 2011). Hence, validated rehabilitation
to improve post-stroke recovery of motor functions is in great
demand. We here argue that closed-loop transcranial magnetic
stimulation (TMS) has potential in enhancing rehabilitation, and
we will highlight the distinction between non-adaptive closed-
loop TMS, and adaptive closed-loop TMS. Briefly, non-adaptive
closed-loop TMS aims at bringing a typical patient’s brain state
to a desired target state and overcome expected perturbations.
Adaptive closed-loop TMS additionally offers the ability to adapt
to individual patients and to unexpected perturbations (Åström
and Wittenmark, 2013). We also discuss how leveraging state-of-
the-art methods might support the implementation of these
advanced TMS rehabilitation approaches in the near future.
2. Investigating stroke recovery with neuroimaging methods

Motor function is tightly choreographed by the cerebral motor
network, comprising the primary motor cortex (M1), premotor cor-
tex (PMC), supplementary motor area (SMA), the cerebellum, and
subcortical areas such as the thalamus (Rehme and Grefkes,
2013). Stroke lesions in these areas do not only lead to a loss of
function of the affected area but also disrupt neural coordination
in the motor network (Baldassarre et al., 2016; Carrera and
Tononi, 2014; Grefkes and Fink, 2014; Rehme and Grefkes, 2013;
Siegel et al., 2022). There is no one unique route of reorganization
of the motor network after stroke to recover motor function (Di
Pino et al., 2014; Grefkes and Fink, 2014). Instead, we face a very
heterogeneous clinical population, where the path to recovery
needs to be enhanced individually (Di Pino et al., 2014; Ziemann
et al., 2019). Identifying prognostic biomarkers may be beneficial
in selecting the individual therapeutic steps for motor recovery
after stroke.

Potential biomarkers have been reported from different neu-
roimaging techniques: magnetic resonance imaging (MRI) helps
identifying brain areas that are involved in motor functions, and
derived structural and functional connectivity analyses may help
predicting individual patient recovery (Grefkes and Fink, 2014;
Stinear, 2017).

The neurophysiological techniques of magneto-/electroence-
phalography (MEG/EEG) can represent brain activity at a millisec-
ond scale, enabling the coordination of interventions with rapidly
changing brain states. Spontaneous EEG provides functional infor-
mation characterized by activity in different frequency bands:
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–
30 Hz) and gamma (>30 Hz) (Keser et al., 2022). Moreover, the
so-called sensorimotor rhythm refers to oscillations recorded over
the sensorimotor cortex with peaks around 10 and 20 Hz (Hari,
2006). In this paper, we relate to the alpha range (8–12 Hz) over
the Rolandic fissure when mentioning the mu-rhythm. Activity
within frequency bands can be examined using quantitative EEG
measures derived from power spectrum analysis, and the relation
of power between different frequency bands (Finnigan and van
Putten, 2013), or the functional connectivity (FC) between different
brain areas (Keser et al., 2022). The latter is commonly calculated
based on the coherence within given frequency bands between dis-
tant regions (Keser et al., 2022). In view of stroke as a network dis-
ruption, FC seems to be a promising tool to represent brain
network changes that correspond to recovery. EEG can be com-
bined with non-invasive brain stimulation (NIBS) techniques, such
as TMS (Hernandez-Pavon et al., 2023; Kallioniemi and Daskalakis,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.clinph.2023.10.004&domain=pdf
https://doi.org/10.1016/j.clinph.2023.10.004
mailto:ulf.ziemann@uni-tuebingen.de
https://doi.org/10.1016/j.clinph.2023.10.004
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


J. Rösch, D. Emanuel Vetter, A. Baldassarre et al. Clinical Neurophysiology 158 (2024) 204–211
2022; Tremblay et al., 2019). Effective connectivity, as investigated
by combining EEG and TMS has potential to become a prognostic
tool for stroke recovery (Tecchio et al., 2023). The role of TMS–
EEGmeasures as predictive biomarkers has been reviewed recently
(Keser et al., 2022).
3. Electrophysiological biomarkers for prediction of motor
stroke outcome

In the following section, biomarkers in motor stroke are
reviewed with a focus on FC estimated from EEG-recorded data
and frequency-based measures of EEG-power. Literature on acute,
sub-acute, and chronic stages of stroke as well as different types of
stroke (subcortical, cortical, ischemic, hemorrhagic) is considered.
This overview covers only a small part of the available publica-
tions; readers are referred to the literature that includes more
extensive reviews and more details (Finnigan and van Putten,
2013; Guggisberg et al., 2019; Keser et al., 2022; Milani et al.,
2022; Ulanov and Shtyrov, 2022).

3.1. Functional connectivity

EEG-derived FC reflects temporal correlations of the neurophys-
iological activity of remote brain regions (Fingelkurts et al., 2005).
There are several methods to calculate FC (Bastos and Schoffelen,
2016) and it can further be examined with regard to inter- or
intra-hemispheric connectivity, which is of relevance in the
approach of stroke as a network disorder. Importantly for applica-
tion in real-time settings, FC can be computed on the single-trial
level (Basti et al., 2022). Such FC metrics are not identical to the
‘‘traditional” trial-average FC metrics. It is therefore important to
note that the field of FC is heterogeneous; results from one metric
need not translate directly to other metrics. With this note of cau-
tion in mind, we will briefly review how EEG-derived FC relates to
stroke:There is evidence that the reorganization of the imbalance
in FC between and within the hemispheres is related to motor
recovery. Higher MEG-derived FC in the alpha band of the ipsile-
sional primary somatosensory cortex and prefrontal cortex to the
whole brain was followed by better recovery, whereas reduced
connectivity between contralesional sensorimotor areas and the
whole brain appears to be beneficial for motor recovery
(Westlake et al., 2012). In the sub-acute stage, lower inter-hemi-
spheric connectivity between motor cortices in the alpha band
was detected in stroke patients with poor motor functions as com-
pared to healthy controls, together with an opposite pattern in the
theta band (Kawano et al., 2020). Calculation of the graph-theoretic
weighted node degree, which reflects the number of connections
from different areas, has revealed that the global weighted node
degree between the ipsilesional motor cortex to other cortical
areas correlates with motor improvement within the first weeks
after stroke, specific to the beta frequency band (Nicolo et al.,
2015). FC in the sensorimotor network, investigated in the low beta
frequency band by normalized inter-hemispheric strength, is pos-
itively associated with corticospinal tract integrity and upper
extremity function (Pichiorri et al., 2018). Keser and colleagues
(2022) summarize that motor recovery is correlated with restora-
tion of inter-hemispheric activity with increased intra-hemispheric
coherence in the ipsilesional motor network.

3.2. Power measures in different frequency bands

The brain symmetry index (BSI) in different frequency bands
quantifies the similarity of spectral power in EEG in the two hemi-
spheres (van Putten, 2007). BSI, the amount of power in different
frequency bands as well as the ratios between bands, like the
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delta–alpha ratio (DAR) or the ratio of delta + theta power to
alpha + beta power (DTABR), are further methods of so-called
quantitative EEG to characterize brain activity (Kaiser, 2007).

Chronic stroke patients had higher BSI values in delta and theta
bands in the ipsilesional hemisphere compared to healthy controls,
and the increased asymmetry was associated with poor motor out-
come (Saes et al., 2019). In acute stroke patients, an increase in rel-
ative delta power was observed, while healthy controls had higher
relative alpha power, which resulted in a higher DAR for the
patients (Finnigan et al., 2016). Similarly, the DTABR was higher
in stroke patients due to higher relative beta power in the healthy
controls (Finnigan et al., 2016). In the sub-acute stage, DAR is pos-
itively correlated with the National Institute of Health Stroke Scale
(NIHSS) 30 days after the stroke event (Kwah and Diong, 2014),
which indicates that a greater amount of slower EEG components
is associated with more impairment (van Putten, 2007). Hence,
low values in delta power, DAR, DTABR or BSI during the acute
ischemic stroke stage are associated with relatively better func-
tional outcomes (Finnigan and van Putten, 2013).

Analyzing narrow bands in the frequency domain is often per-
formed without addressing the aperiodic part of the signal, which
is reflected in the decay of the EEG signal in the power spectral
density plots. Investigation of the steepness of the spectral expo-
nent, which represents broad-band EEG slowing, showed that
slowing was more present in the affected hemisphere of acute cor-
tical stroke patients compared to healthy controls, and the differ-
ence between the hemispheres became less two months after
stroke (Lanzone et al., 2022). Moreover, this normalization corre-
lated with improvements on the NIHSS, indicating that the scale-
free dimension of EEG can also be utilized as a marker of stroke
recovery (Lanzone et al., 2022).
4. Closed-loop TMS

TMS is a promising tool for motor stroke rehabilitation because
of its ability to induce plastic changes in the cortex (Ziemann et al.,
2008). However, TMS effects on the motor system suffer from
inter- and intra-individual variability (Hamada et al., 2013). This
is partially explained by the cortical neuronal dynamics and
endogenous network activity at the time of the TMS pulse
(Bergmann, 2018).

To address this variability, brain state-dependent stimulation
protocols have been developed, in which the TMS pulses are deliv-
ered in a time window when a selected brain state occurs. In the
motor system, the instantaneous phase and power of the mu-
rhythm have been identified as suitable indicators of opportune
time windows (Bergmann et al., 2019; Hussain et al., 2019, 2020;
Karabanov et al., 2021; Sato et al., 2015; Schaworonkow et al.,
2018; Thies et al., 2018; Wischnewski et al., 2022; Zrenner et al.,
2018, 2023). Stimulating only during a specific target state can
increase the efficacy of plasticity induction by TMS (Baur et al.,
2020; Zrenner et al., 2018).

Brain state-dependent stimulation can be performed in open- or
closed-loop modes (Antony et al., 2022): In open-loop brain state-
dependent stimulation, pulses are delivered when a priori defined
target brain states are observed (Antony et al., 2022), e.g., at the
trough of the sensorimotor mu-rhythm (Schaworonkow et al.,
2018). However, the immediate or even long-term effect of the
stimulation on the brain state is disregarded. In contrast, in
closed-loop brain state-dependent stimulation, this very effect of
the stimulation is taken into account by continuously adjusting
the stimulation parameters such as the targeted brain state. More
precisely, the achieved outcome of the stimulus is compared
against the desired outcome, and the stimulation parameters are
chosen based on this comparison. In non-adaptive closed-loop
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control, this mapping from the deviation of the actual and the
desired outcome is fixed. In adaptive closed-loop control, it is con-
tinuously adjusted by an adaptation mechanism (Åström, 1983).
Adaptive closed-loop brain state-dependent stimulation may be a
critical addition in clinical settings, considering the very heteroge-
neous stroke population and the highly variable recovery paths
which are influenced by the type, location, and size of the stroke
lesion.This paper aims to present a conceptual approach, illus-
trated by examples of experimental set-ups, on how EEG biomark-
ers in adaptive closed-loop experiments can be utilized to support
motor recovery in stroke.
5. Strategy for TMS

Based on the aforementioned evidence on the association
between EEG-based connectivity and activity measures with motor
outcome, it is possible to partially predict clinical recovery from
motor stroke using electrophysiological biomarkers. A straightfor-
ward strategy to translate this into a therapy is to use TMS to
enhance the expression of EEG biomarkers that are predictive of
good recovery, and suppress those that are predictive of unfavor-
able outcomes. This way, the connectivity and excitation/inhibition
balance within the brain, disrupted by the lesion, may be restored.
However, it is likely that varying lesion locations (cortical vs. sub-
cortical vs. infratentorial) affect the EEG signal in different ways
and to different extents, limiting the biomarkers that can reliably
be detected, and that stimulation methods and protocols need to
be adjusted depending on the individual patient and path of recov-
ery (Di Pino et al., 2014).

5.1. Considerations on causality

We should note that a biomarker that correlates with recovery
does not necessarily imply a causal relationship with recovery.
Nevertheless, experimentally testing the identified (plausible) can-
didate biomarkers can reveal a causal relationship that may be
used in therapy. In a recent extensive review, Cassidy and col-
leagues investigated the complexity of correlation and causation
with regards to biomarkers based on FC in post-stroke recovery
(Cassidy et al., 2022). The authors utilize the Bradford Hill Criteria
(Hill, 1965) to demonstrate opportunities and challenges of con-
nectivity biomarkers to predict post stroke recovery (Cassidy
et al., 2022).

In this context, TMS aiming to modulate an EEG biomarker of FC
could provide the strongest evidence that the biomarker causally
supports post-stroke recovery.

5.2. Closing the control loop

Here, we follow previous literature that suggested using control
approaches, especially closed-loop control, to achieve better TMS
efficacy (Antony et al., 2022; Zrenner et al., 2016). As we aim to
modify the brain with TMS in a way that an EEG biomarker
changes, we must ask: what control can we exert by TMS? This
question has two aspects: first, we need to characterize the stimu-
lation parameter space; second, we need to characterize how TMS
affects the biomarker of interest. For concreteness, cohesiveness,
and illustration, we use EEG-derived FC as the biomarker of inter-
est, without loss of generality.

5.2.1. The stimulation parameter space
The stimulation parameter space includes obvious parameters,

such as the properties of the induced electric field — its intensity,
location of the highest field strength, and orientation. With con-
ventional TMS coils, this is defined by the coil geometry, position,
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and 3D orientation (Deng et al., 2013; Opitz et al., 2011). With mul-
ti-coil transducers, the spatial distribution of the induced electric
field on the cortical surface can be adjusted electronically, i.e.,
without physically moving the coils (Koponen et al., 2018;
Nieminen et al., 2022; Nurmi et al., 2021; Souza et al., 2022). Such
multi-locus (mTMS) systems enable optimizing the stimulation
parameters with automated algorithms to achieve a target
response on real-time EEG and electromyographic recordings
(Tervo et al., 2020, 2022). Additionally, the waveform (mono- vs.
biphasic) (Sommer et al., 2006) and duration (D’Ostilio et al.,
2016) of the TMS pulse contribute directly to the dynamics of
the induced electric field and the evoked brain response. Further-
more, the interval between consecutive TMS pulses (interstimulus
interval, ISI) constitutes another important stimulation parameter
(Hassanzahraee et al., 2019; Julkunen et al., 2012). TMS pulses
can also be delivered in trains, such as theta burst stimulation
(TBS) (Chung et al., 2015). In this case, the duration (e.g., 3 pulses)
and internal frequency (e.g., 50 Hz) of the bursts, and the frequency
at which bursts are delivered (e.g., 5 Hz), as well as the number of
bursts delivered continuously or in series (e.g., continuous TBS vs.
intermittent TBS; Chung et al., 2015; Huang et al., 2005; Suppa
et al., 2016) expand the stimulation parameter space substantially.
Less obviously, the state of the brain at the time of stimulation can
be considered a stimulation parameter. By giving the subject a
suitable task, such as motor exercises or motor imagery in the case
of stroke patients, the effects of TMS may change because the
motor network is already in an active state (Hashimoto and
Rothwell, 1999). In principle, the task during which TMS is applied
could thus be used to improve the efficacy of TMS, though this
‘‘task dynamics loop” (Zrenner et al., 2016) will not be covered
here.

TMS can also be triggered based on the spontaneous dynamics
of the brain as observed with EEG — in brain state-dependent stim-
ulation. The brain state at which a pulse is delivered thereby
becomes another parameter of stimulation. For example, single
pulses have previously been delivered at specific phases of the sen-
sorimotor mu-rhythm when there was sufficient mu-band power
(Schaworonkow et al., 2018). In such a case, the target frequency
band, the power threshold, and the target phase are also among
the crucial stimulation parameters. Clearly, the stimulation param-
eter space can be further expanded: for example, brain states based
on EEG phase synchronicity patterns in distributed networks
(Stefanou et al., 2018) or based on FC patterns may be identified
and real-time inferences can be developed.
5.2.2. Effects of TMS on functional connectivity
The goal we consider here is to modify FC with TMS in stroke

patients suffering from a cortical lesion. To achieve this, TMS needs
to alter FC in specific connections and in a defined direction. Open-
loop brain state-independent TBS of M1 modifies the magnitude
and direction of resting-state FC depending on the TBS protocol.
Whereas continuous TBS decreased alpha-band FC across the
whole cortex and increased beta-band FC between bihemispheric
anterior areas (Shafi et al., 2014), intermittent TBS increased
alpha-band FC (Zhang and Fong, 2021). Cortico–cortical paired
associative stimulation can specifically increase the high-beta FC
along a target connection, by delivering paired pulses to the nodes
at either end of the connection (Hooyman et al., 2022). The orien-
tation of the induced electric field has also been demonstrated to
affect FC measures (Pieramico et al., 2023). Thus, we find it plausi-
ble that TMS is a suitable method to introduce specific, well-
defined FC changes in the motor network.

In the following, we will introduce both non-adaptive and adap-
tive closed-loop TMS focused on FC with toy examples. These
examples cannot directly be run as experiments yet, but they will
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highlight which parts of the process are currently missing and need
to be filled in, in order to actually run such experiments.

5.3. Non-adaptive closed-loop brain stimulation

The notion of closed-loop control comes from control engineer-
ing and theory, and is for example explained in detail in (Ogata,
2010). As has recently been highlighted, there is substantial confla-
tion of the terms closed-loop and brain state-dependent stimula-
tion in the field of TMS (Antony et al., 2022). The goal of closed-
loop control is to control the system state — driving the system
or its response to a desired state by changing the stimulation
parameters based on the observed state. In the case of open-loop
brain state-dependent stimulation (e.g., triggering TMS on the
trough of the mu rhythm), we affect the system during a specific
brain state with fixed or predefined parameters without updating
them based on measured effects. Such an open-loop stimulation
may still alter the brain state, but this effect is not taken into
account in choosing the subsequent stimulation parameters.

In accordance with prior literature (Antony et al., 2022; Ogata,
2010; Thut et al., 2017), we subscribe to the following definition:
In closed-loop TMS, the stimulation parameters are chosen based
on the deviation of the observed brain-state from a reference, i.e.,
a target brain state, to steer the brain state towards the reference.
Therefore, closed-loop TMS requires some predefined reference
state and entails altering neuronal activity towards that reference
(Thut et al., 2017).

This reference could be derived a priori from the literature and
medical knowledge, but may, importantly, also be selected based
on the individual medical needs of the patient. In non-adaptive
closed-loop control, the mapping of the deviation of the actual
brain-state from the reference to the stimulation parameters is
static.

The non-adaptive closed-loop approach is detailed in Fig. 1,
with an illustrative example (note that the example is speculative,
and not strictly derived from prior literature): let the reference
state be a high FC between intra-hemispheric motor nodes (let
those be SMA and M1). This reference is then compared (not nec-
essarily by subtraction) with the actual brain state (e.g., low FC),
yielding the deviation or error signal (e.g., ‘‘FC needs to be
increased”). This deviation is mapped onto stimulation parameters
that are suitable to drive the brain towards the reference state (e.g.,
intermittent TBS during lowmu-power). This mapping is called the
Fig. 1. Non-adaptive closed-loop control. General depiction of a non-adaptive closed-loo
(high intra-hemispheric functional connectivity (FC)) is compared to the initial syste
increased”). The error signal is mapped onto the stimulation parameters by the controll
stimulation parameters are translated into the actual system input (10 theta bursts at l
stroke patient) then gives some output (increased, but low intra-hemispheric FC) in re
(closed-loop). Note that the controller’s parameters are fixed/static (non-adaptive).
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‘‘controller”, or control function (Fig. 2, left panel). The stimulation
parameters are then translated into the actual stimuli by an ‘‘actu-
ator”. The stimuli (e.g., 10 theta bursts) are delivered by the actu-
ator to the brain—in control-engineering terms, they are the
control input to the system under control. The brain’s modified
state in reaction to the stimulation (e.g., slightly increased FC) is
then observed in the EEG signal, and again compared to the refer-
ence. Thereby, the loop is closed. If the control function is fixed, the
closed-loop control is called non-adaptive.

The brain state at which we deliver a pulse can be considered a
stimulation parameter. In that case, the real-time EEG processing
system that infers the current brain state and delivers a pulse
when the selected brain state occurs, is (part of) the actuator and
a tool of the controller.

This example already highlights problems that need to be
addressed when implementing a closed-loop TMS protocol. Most
prominently, the mapping from the deviation of the actual brain
state to the reference has to be chosen. In the simplest case, this
mapping might be manually defined led by prior knowledge. How-
ever, it might be more feasible and flexible to infer it by machine
learning: from simple linear regression to generalized linear mod-
els to deep-learning based approaches (Gebodh et al., 2023). A
wide array of tools can be used to learn the mapping from an
open-loop dataset. Naturally, this requires a dataset that covers
enough of the stimulation-parameter space.

Hitherto, the mapping from the error signal to the control input
has been static — i.e., the parameters of the controller are fixed
(Fig. 1). While the stimulation parameters chosen for too high FC
may in general be different from those chosen when the FC is too
low, the stimulation parameters for a particular deviation will stay
the same (Fig. 2, left panel). That is, the closed-loop control is non-
adaptive. If this controller is then applied to a patient for whom it
does not fit, the protocol will fail. This motivates making the con-
troller adaptive.

5.4. Adaptive closed-loop brain stimulation

In adaptive closed-loop brain stimulation, the mapping from
deviation to stimulation parameters is adapted on-line by an
adjustment mechanism that takes the relation of control input to
the system and the system output into account (Åström, 1983).
Hence, the mapping of the deviation from the reference to stimu-
lation parameters is no longer static, but automatically adjusted.
p controller, with values from a speculative example for illustration: The reference
m output (low intra-hemispheric FC), yielding the error signal (‘‘FC needs to be
er (intermittent theta burst stimulation (iTBS), high intensity, low mu-power). The
ow mu-power) by the actuator. The system (ipsilesional motor network of a motor
sponse to this input. The output is fed back to the comparison with the reference
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The adaptive closed-loop brain stimulation approach is visual-
ized in Fig. 3, along with a speculative example showing how it
may be added to the above-described example of non-adaptive
closed-loop TMS. In this extended example, everything is the same
from the initial deviation to the first 10 theta bursts delivered. But
now, let the original controller be unfit to the patient: Instead of an
increased FC (reduced deviation), we observe a further decreased
FC (increased deviation). In this case, if the controller remained sta-
tic, it would simply repeat the same inappropriate input, and
Fig. 3. Adaptive closed-loop control. General depiction of an adaptive closed-loop contro
error signal is mapped onto the stimulation parameters by the controller. The stimulation
theta burst stimulationTBS (iTBS)). The system then gives some output in response to this
adjustment mechanism further relates system input/ stimulation parameters and output,
concrete, illustrative values are nearly the same as in Fig. 1, however, in this case, the resu
the controller is here applied to an unfit patient. The adjustment mechanism is illustrat
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Fig. 2. Illustrative example of an adjustment mechanism (explanation see 4.4). Left:
the parameters of the controller (i.e., the mapping from error to control signal; red
line) are inferred from a calibration dataset (black dots). The gray arrow in the left
plot indicates how the desired change in functional connectivity (FC) (DFC > 0) is
mapped to the target lowmu-power (see examples in 4.3 and 4.4, and Figs. 1 and 3).
Right: new observations (blue dots) sampled at this target band-power replace
some of the calibration data (black circles), and the controller’s parameters are re-
inferred (red line). The updated controller thus will pick a different target mu-
power to achieve the same change in FC (gray arrow). All data here presented are
fictional. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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would thus likely not achieve an increase in FC. This is where the
adjustment mechanism comes into play: the relation of the system
input (10 intermittent theta bursts at high intensity, during low
mu-power) to the observed system output (lower intra-hemi-
spheric FC) is now used to modify the controller’s parameters.

Fig. 2 (right panel) illustrates an adjustment mechanism limited
to the mapping from the error signal to the targeted mu-band
power, and ignores the other stimulation parameters for the sake
of brevity and illustration. The control function (dark red dashed
line) was fitted to prior data (calibration data; black dots) from
representative patients. This might for example be done by linear
regression.

Since the aim is to increase FC (i.e., DFC > 0 in Fig. 2), the orig-
inal mapping tells us to target a low power state (see Fig. 2, left
panel, gray arrow). But as the system delivers stimuli during low
mu-power, we observe a decrease in FC — the opposite of what
we expected based on the calibration data. In the adaptive setting,
we might, for example, replace the first five data points of the cal-
ibration dataset with the five data points observed so far from the
deviant patient. Afterwards, the mapping is recomputed from the
updated data by linear regression — yielding a different mapping
(see Fig. 2, right panel). In this example, the linear regression-based
mapping would now recommend targeting an average or above-
average mu-power to increase FC, which is more appropriate for
the simulated atypical patient. That is, the controller’s parameters
are being adapted to the system under control. Note that in this
example the parameters are frequently adjusted to the new
patient. Generally, the controller does not have to be adjusted after
each ‘‘step”; it can be updated more slowly (Åström and
Wittenmark, 2013).

It should be evident already that there are many ways of
implementing such an adaptive controller. Naturally, other
methods than linear regression may be used to select the
ller: the reference is compared to the system output, yielding the error signal. The
parameters are translated into the actual system input by the actuator (intermittent
input. The output is fed back to the comparison with the reference (closed-loop). An
and on this basis can adjust the parameters of the controller, making it adaptive. The
lt of the stimulation is lower intra-hemispheric functional connectivity (FC), because
ed in Fig. 2.
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controller’s parameters. Furthermore, in the given example, the
controller never ‘‘explores”, it always ‘‘exploits”, and basically finds
an improved mapping by luck and the convenience of the given
constructed example. This could, for instance, be addressed by an
epsilon-greedy policy or importance sampling (Sutton and Barto,
2018). These would allow the controller to sample parts of the
stimulation-parameter space that may not be of immediate inter-
est for controlling the system, but still may be important for sys-
tem identification.
6. Conclusion and future directions

In this paper, we have highlighted the possibility to approach
closed-loop brain stimulation in an adaptive fashion when aiming
for motor recovery in stroke patients. While the concept of adap-
tive closed-loop stimulation itself is not new, we extend it with
the integration of electrophysiological biomarkers that can be bidi-
rectionally modified by TMS. We do not claim that only adaptive
closed-loop stimulation is effective in improving motor recovery
in stroke patients. Instead, we seek to present and distinguish
increasingly flexible approaches to be employed, where they may
become necessary. These approaches can be implemented in a
new fundamental way by novel algorithms for real-time data anal-
ysis, together with the mTMS technology and methodology that we
are currently developing (Souza et al., 2023; Sinisalo et al., under
review; Marzetti et al., under review; Humaidan et al., under
review).

To establish therapeutic applications, dedicated research is
needed. One apparent question is, which biomarkers are of interest
and sufficiently reliable, how these biomarkers change over time
after stroke and how they relate to recovery. Collecting and sharing
suitable large datasets will help address these questions collabora-
tively. This becomes crucial for drawing evidence-based conclu-
sions, especially in the light of diverse connectivity measures.
Longitudinal studies that include patients and follow recovery for
several months, from acute to chronic stages, may help specify
and customize biomarkers for different patient groups. Studies
aiming for causal relation instead of simple correlation can uncover
brain mechanisms that need to be targeted. Restoring the balance
between and within the ipsi- and contralesional hemispheres
might play an important role (Grefkes and Fink, 2014). Another
important issue is the time after stroke when the stimulation is
applied. Effectiveness and therapy goals might be considerably dif-
ferent according to stroke stage, e.g., from prevention of maladap-
tive changes in the early stage to supporting neuroplasticity at
later stages.

Developments on TMS technology that enable rapid and multi-
site stimulation is crucial to modulate multiple nodes of a func-
tional network. Recent advances in mTMS systems (de Lara et al.,
2021; Koponen et al., 2018; Nieminen et al., 2022; Souza et al.,
2022) enable one to adjust the stimulation parameters at a mil-
lisecond scale. This includes not only intensity, timing, and wave
shapes of the pulses but also the cortical target loci and induced
electric field orientation. These advanced systems could deliver
the therapeutic stimulation at the optimal brain state, to multiple
brain regions of the unbalanced motor network after stroke
(Baldassarre et al., 2016; Grefkes and Fink, 2014; Rehme and
Grefkes, 2013), thus allowing the adjustment of far more parame-
ters than the presently available instrumentation. This approach
would exploit the full potential of adaptive closed-loop algorithms,
and may lead to more effective treatments of network disorders
than when stimulation is delivered at a single cortical location.

If possible, neuroimaging methods such as functional or diffu-
sion MRI can be combined with MEG/ EEG methods to add to the
overall diagnostic findings and to enable more accurate mapping
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of the parameter space (Aydogan et al., 2023; Pieramico et al.,
2023). This may be especially necessary in cases where the latter
methods fail to represent brain activity accurately, such as focal,
subcortical lesions (Finnigan and van Putten, 2013).

On the one hand, it is essential to define distinct characteristics
of the selected biomarkers that need to be targeted with a certain
protocol. To this aim, computational models might be employed to
take into account the effects of focal lesion on the motor network
(Aerts et al., 2016). Moreover, the framework of closed-loop brain
stimulation needs to be translated into the clinical setting. Here the
challenges relate to more practical issues. A closed-loop stimula-
tion approach should be built in such a way that it can reliably
be applied in the clinical environment with regard to the available
equipment of medical institutions. Also, human operators should
retain control of the automated closed-loop applications.

Secondly, we want to highlight the importance of these medi-
cally trained human operators: the choice of the reference state
(goal of therapy) should be informed by the needs of the patient,
the structural and functional lesions in the patient’s brain and
associated motor impairments. This may eventually be supported
or even completely done by autonomous systems, but likely will
for now and a long time remain at least partially the domain of
humans. This means that it is not necessary for clinical applications
to have a fully autonomous system based on machine learning —
partial automation can already be very useful for clinical practice.
Even when high-level decisions remain the field of human opera-
tors, automated algorithms that select and adjust the stimulation
parameters in real time serve a crucial role in minimizing user-
dependent errors (Nieminen et al., 2022; Tervo et al., 2022), and
are a first step towards higher levels of autonomy, as it has been
achieved in surgical robotics (Attanasio et al., 2021).

Adaptive closed-loop brain stimulation holds the potential to
address the heterogeneity of the clinical population and to enhance
motor recovery in stroke patients. Finally, motor stroke is just one
example of a brain network disorder, but many other frequent neu-
rological and psychiatric diseases, such as Alzheimer’s disease,
Parkinson’s disease, multiple sclerosis, depression, obsessive com-
pulsive disorder, anxiety disorder, addiction or pain can be concep-
tualized as network disorders that can also be targeted by adaptive
closed-loop brain stimulation in a highly individualized manner.
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