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1. Neuroimaging evidence for network-level brain states

In the last decades, system neuroscience has provided evidence
for the dependence of human cognition and behavior on the forma-
tion of neuronal networks that transiently link distributed brain
regions in response to external stimuli and or task demands
(Gonzalez-Castillo and Bandettini, 2018), closely resembling net-
works observed also during the resting state (Deco and Corbetta,
2011). Yet, more recently, evidence has been provided for the idea
that the internal state, i.e., the latent properties or activity of the
brain when an external input is delivered, influences how the brain
processes a task (Bradley et al., 2022). Seemingly, response and
task performance are the result of a nonlinear interaction between
the ongoing latent brain state and stimulus processing (Huang
et al., 2017), with the fluctuation between different states in both
time and space determining the variable responses of the brain
in relation to behavior (Zagha and McCormick, 2014). A relevant
example in this framework is the work by (Taghia et al., 2018),
using functional Magnetic Resonance Imaging (fMRI) on a sec-
ond/sub-second temporal scale, proposing a computational
approach to identify large-scale latent brain states, and to deter-
mine their relation to working memory task conditions. Several
studies using non-invasive electrophysiology, i.e., Elec-
troEncephaloGraphy (EEG) and MagnetoEncephaloGraphy (MEG),
have also shown that perception and task performance depend
on the current state of the brain before the stimulus, e.g., (Shin
et al., 2017; VanRullen et al., 2011; Weisz et al., 2014), showing
also that the duration of such latent brain states is in the order
of tens of milliseconds.
2. Brain state-dependent stimulation

The integration of Transcranial Magnetic Stimulation (TMS)
with techniques able to non-invasively measure neuronal activity,
such as EEG (Bergmann, 2018; Bergmann et al., 2016; Ilmoniemi
and Kičić, 2010; Silvanto and Pascual-Leone, 2008), has made it
possible to detect the state of the brain right before the stimulation
(Bai et al., 2022; Zrenner et al., 2018). This has been mostly
assessed by looking at the temporal and spectral characteristics
of the EEG signal at the channels near the brain region being stim-
ulated (Mäki and Ilmoniemi, 2010). As a paradigmatic example, the
phase and power of the sensorimotor 9–13-Hz mu rhythm have
been considered as indicators of cortical excitability that determi-
nes the response to TMS in the sensorimotor system (Desideri
et al., 2019; Karabanov et al., 2021; Madsen et al., 2019;
Schaworonkow et al., 2019; Zrenner et al., 2018). By considering
the phase and power of the mu rhythm to trigger the stimulation,
it might be possible to reduce inter- and intra-subject variability
(Ziemann and Siebner, 2015). Nevertheless, these studies, differ-
ently from neuroimaging-based evidence for network-level brain
states, have relied on local features of brain activity rather than
on large-scale properties of brain dynamics.
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3. Proposed conceptual definition of large-scale brain states

While in all the above-mentioned studies, brain states are
implicitly defined as recurring and continuously evolving sets of
neural dynamics that are stable for a behaviorally significant per-
iod (Zagha and McCormick, 2014), we want to further clarify a
few more aspects that are crucial to the definition of brain states
that we will refer to in this paper.

First, the duration of brain states we aim at identifying here
must be compatible with that of behavior, i.e., fast dynamic brain
states with temporal frequencies in the range 0.1–100 Hz. This
makes us exclude from the present paper any reference to other
common definition of brain states such as wakefulness compared
to sleep, consciousness compared to unconsciousness or, for exam-
ple, meditative or transcendental states (Bradley et al., 2022). The
rationale for this choice does not come from the idea that these
alternative definitions of brain states do not impact the effects of
the stimulation (Massimini et al., 2005); it rather stems from our
overarching goal to identify brain states that can be a reference
for triggering the stimulation in real time.

Second, we want to identify large-scale brain states, as opposed
to local properties used so far in EEG–TMS for brain state-depen-
dent stimulation. The idea that we want to promote is to rely on
large-scale properties of the brain for the identification of such a
recurring set of neural dynamics, similarly to what was done in
the neuroimaging studies we referred to in the first paragraph.
Indeed, this paper is framed in the context of the ConnectToBrain
project (connecttobrain.eu), which develops multi-locus TMS sys-
tems capable of stimulating multiple brain locations at once or in
rapid spatiotemporal sequences (see section Towards large-scale
stimulation of Fast-dynamic Large-scale Brain States). With this
vision in mind, it is clear that a dynamic large-scale definition of
brain state can be optimally exploited by the multi-locus TMS sys-
tem (Koponen et al., 2018; Nieminen et al., 2022; Souza et al.,
2022), or any other system able to target multiple brain regions,
with regard to when and where the network-like stimulation
should be delivered. Brain states with the above properties will
be referred to as Fast-dynamic Large-scale Brain States (FLBS).

Third, the identified FLBS must be such that when TMS is
applied, this results in an improvement in the targeted endpoint
of the stimulation (see Fig. 1 for a graphical representation of this
concept). In this context, the endpoint is a feature in neural, behav-
ioral, or peripheral responses to stimulation that changes, on a
short term or in the longer run, as a consequence of TMS. Possible
endpoints may relate to: EEG features (e.g., amplitude of Transcra-
nial Evoked Potentials or TEPs, functional and effective connectiv-
ity), behavioral responses (e.g., task response accuracy), peripheral
responses (e.g., amplitude of Motor Evoked Potentials, MEPs), and
clinical scores (e.g., Upper Extremity Fugl-Meyer Assessment scale
for determination of arm-/hand function in motor stroke, (Fugl-
Meyer et al., 1975)). Overall, the concept of endpoint improvement
is broad, since it depends on the nature of the endpoint and may
cover, for example, increased strength of a specific feature (e.g., lar-
ger TEPs, larger motor network connectivity) as well as a smaller
variability of a specific feature (e.g., amplitude of MEPs) across
stimulation repetitions or subjects. In the following, we will refer
to FLBS with the latter property as Endpoint-Related Fast-dynamic
Large-scale Brain State (ER-FLBS). In this paper, we will introduce a
series of methods to identify ER-FLBSs from off-line EEG data in the
time interval before the stimulation. For specific examples, we will
also show that the identified brain states are actually related to a
specific endpoint, which for the sake of clarity, will be, through this
paper, the amplitude of the MEP. Finally, we will also provide the-
oretical evidence for the identification and targeting of ER-FLBSs
during an on-line experiment.
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4. Types of endpoint-related fast-dynamic large-scale brain-
state and methods for their off-line identification

In this paragraph, we will first introduce methods to identify
FLBSs from off-line data according to different metrics. Then, we
will describe how these FLBSs can be put in relation with the target
endpoint, thus being identified as ER-FLBS, and, finally, we will
provide an example of off-line analysis of ER-FLBSs.

A large-scale brain state with fast dynamics can be identified
off-line from electrophysiological data as a pattern of frequency-
specific whole-brain activity or signal power. A popular method
to this end is EEG microstate analysis, which aims to identify
dynamical sequences of stable large-scale spatial topographies on
the scalp (Britz et al., 2009; Croce et al., 2020; Murray et al.,
2008) using an unsupervised learning approach such as k-means
(Bishop, 2006) to cluster scalp topographies based on their similar-
ity measured using Euclidean distance. More recently, alternative
methods to identify patterns of activity and their dynamics based
on Hidden Markov Models (HMMs) have been proposed
(Vidaurre et al., 2018). HMM serves as a statistical tool for depict-
ing a sequence of hidden data distributions, in which the likelihood
of occurrence of each state solely depends on its antecedent occur-
rence. Differences between microstates and HMM states arise both
spatially and temporally. Microstates have been related to sharp
events of neural synchronization, i.e., peaks in the Global Field
Power, whereas HMM states disclose network-level activity with
100–200-ms lifetimes. Both microstate and HMM analyses can,
thus, be used to identify neural events occurring at different tem-
poral scales, representing the fast, sub-second scale electrophysio-
logical dynamics (Coquelet et al., 2022). In the following, we will
provide an exemplary application of the HMM approach to derive
this type of brain states from TMS–EEG data. Another method of
separating spatial patterns of activity from the multivariate sig-
nal—Common Spatial Patterns (CSPs)—is tailored to extract EEG
components that maximally distinguish between given discrete
classes of data or experimental conditions (Koles et al., 1990).
CSP is designed to isolate signal components based on covariances
in the spatial distribution of oscillatory power (when applied to
real-valued signals) and phases (when applied to complex signals,
Falzon et al., 2012) across EEG sensors. The spatial filters for com-
ponent extraction are created via generalized eigenvalue decom-
position of channel covariance matrices. Thus, the time
resolution of the derived patterns is conditional on the choice of
the time window for covariance estimation. In principle, signal
components uncovered by CSP represent neuronal activity most
distinct between provided experimental conditions, and as such,
can detect neuronal processes that predict the outcome of TMS.

FLBSs can be also defined from functional connectivity
approaches which capture interactions between brain regions.
Common strategies to assess functional connectivity by MEG and
EEG relying either on coupling of slow signal fluctuations in the
range 0.1–1 Hz (e.g., de Pasquale et al., 2010) or on phase coupling
of fast neuronal oscillations in the range 1–100 Hz (e.g., Marzetti
et al., 2013). See (Engel et al., 2013) for a review on brain coupling
modes. Here, we will consider only bivariate phase-coupling met-
rics as a measure of functional connectivity (Basti et al., 2020;
Marzetti et al., 2019) under the hypothesis that phase coupling
of neuronal oscillations is a proxy for communication between
brain regions (Fries, 2005). More specifically, we will consider
the temporal evolution of such phase coupling between pairs of
regions, i.e., dynamic functional connectivity, which, if sustained
for a behaviorally relevant time period (Ermolova et al., 2021),
may represent connectivity-based FLBSs. Of note, dynamic func-
tional connectivity calculation is prone to false detections; thus,
several theoretical and practical aspects must be considered for a

http://connecttobrain.eu


Fig. 1. The idea of brain state-dependent stimulation. (a) A stimulus delivered without taking into account the current brain state can lead to variable outcomes for all the
considered endpoints (e.g., Behavioral, Peripheral, Brain response); (b) Only when the Endpoint-Related Fast-dynamic Large-scale Brain-state (ER-FLBS) is targeted, an
improved impact can be gained.
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reliable analysis. In brief, we will rely on high-density EEG mon-
tages, eventually in combination with spatial filters (e.g., Laplacian
montages or inverse estimators) to increase EEG spatial focality. In
addition, we will base our functional connectivity estimation on
time-lagged quantities, thus minimizing volume conduction
effects (Marzetti et al., 2019). The duration of the data segment
to be considered for the dynamical analysis will be also chosen
in accordance with our previous results (Sommariva et al., 2019;
Basti et al., 2022).

To facilitate the interpretation of the connectivity-based FLBSs,
neuroimaging and neurophysiological works have relied on graph
theory (Bullmore and Sporns, 2009). Indeed, MEG and EEG studies
identified cortical hubs, which ensure the balance between func-
tional specialization and dynamic integration in the brain
(Kabbara et al., 2017; de Pasquale et al., 2018) as well as highlight
different degrees of dynamic brain modularity (Kabbara et al.,
2019). However, the relationship of time-evolving graph theoreti-
cal properties and the TMS-evoked responses has not been studied.
Structural brain connectivity networks estimated with diffusion
MRI-based streamlines tractography have been shown to be repro-
ducible (Roine et al., 2019) although often contaminated with false
positive connections (Maier-Hein et al., 2017). Our preliminary
data showed that the structural connectivity of the stimulation
locus is related to the TMS-evoked significant current density
(Casali et al., 2010; Ukharova et al., 2022). In addition, functional
MRI has been used to detect resting-state and task-based networks
in the brain (Cole et al., 2021), which may be useful a priori infor-
mation for brain state identification. Taking structural and func-
tional MRI connectivity into account may be able to constrain the
source estimation problem and increase reliability for EEG-based
connectivity metrics. For instance, strategies that incorporate indi-
vidual task or resting-state fMRI networks in the EEG inverse prob-
lem solution can be implemented to ameliorate the low EEG spatial
resolution in source space. One of such strategies would be to
impose a loose spatial constraint based on the fMRI network
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results to the EEG source activity (Liu et al., 1998; Mantini et al.,
2010).

Once FLBSs have been identified, an important point is the
assessment of possible relations between FLBSs and the targeted
endpoint. As already mentioned in the previous paragraphs, a vari-
ety of endpoints can be of interest depending on the specific scien-
tific or clinical questions at hand. Thus, depending on the nature of
the endpoint, as well as on the method used to identify the FLBSs,
different approaches can be used to assess their putative relations
to the target endpoint and, thus, assess their ER-FLBS status. We
will here provide examples for two different approaches used to
identify FLBSs, namely functional connectivity and HMM, and for
one target endpoint, i.e., the amplitude of the MEP.

For the connectivity approach, it is conceivable that a change in
the endpoint is related to a change in the connectivity state of the
motor network before the stimulation eliciting the MEP. More
specifically, we can consider different nodes in this network and
define as different FLBSs the distinct connectivity configurations
among these nodes. For the sake of simplicity, we will here con-
sider only the two-node case (e.g., left primary motor cortex – left
M1 – and ipsilateral supplementary motor area – SMA) and, thus,
two FLBSs, namely the FLBS characterized by either a high or low
connectivity between these two nodes. These two FLBSs will alter-
nate across trials and, to investigate whether these FLBSs have a
relation to the MEP amplitude, we consider the MEP values in
the high-connectivity trials and compare them to the MEP values
in the low-connectivity state, at group level or at single subject
level. If a clear relation is observed, e.g., larger MEP values in trials
characterized by a high-connectivity state (Marzetti et al., 2023),
we conclude that the high-connectivity FLBS is an ER-FLBS for
the MEP amplitude endpoint.

With the HMM approach, a data-driven identification of brain
states can be obtained. HMM analysis reveals discrete states spec-
ified by their topography and time course, as well as the dynamics
of the occurrence of these states in time. Brain states identified by
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HMM are FLBSs, as evident from the empirical observation about
their topography and their duration for EEG and MEG data. Finally,
the relation to the target endpoint can be assessed by establishing
a correspondence between the MEP amplitude and a specific fea-
ture of FLBS dynamics in that trial, for example, the spatiotemporal
characteristics of the last state occurring before the stimulation or
of the most represented one in that trial. An example of the off-line
identification of ER-FLBSs is provided in Fig. 2. Fig. 2a and b show
the topographies and the power spectra, respectively, of the six
identified FLBSs; Fig. 2c their duration and Fig. 2d the relative
MEP amplitude (i.e., median MEP amplitude percentage change
with respect to global median across all states) corresponding to
the trials associated with each state present at the time of stimula-
tion. Overall, these results suggest that State 4 is an ER-FLBS for the
MEP high-amplitude endpoint.

Endpoint-Related Fast-dynamic Large-scale Brain-states can be
identified also with supervised learning approaches, such as classi-
fication or regression algorithms. By these approaches, we can
train a model that directly predicts the endpoint variable given
the signal. For example, Metsomaa et al. (2021) used a logistic
regression classifier to separate high and low cortical excitability
states from the pre-stimulus EEG spatiotemporal signal. The algo-
rithm learns a set of spatiotemporal filters, which can be used to
identify the excitability state. These approaches can be used not
only with raw EEG signals but also with functional connectivity
signals, for example (Syrjälä et al., 2021). Supervised learning
approaches can also be used to identify patterns of activity, which
will be then related to a behavioral endpoint (Guidotti et al., 2015),
for example by correlating the accuracy of classification with the
endpoint, thus establishing a relationship between the discrimina-
tion ability and the expected response. In this framework, another
possible approach is to leverage on the high temporal resolution of
EEG signals to train a classifier in each timepoint and localize when
(and where) brain states differ and the span of this distinction
(Grootswagers et al., 2017). This technique has been applied to
decode the dynamics of grasping (Guo et al., 2021) and of object
recognition (Cichy et al., 2014) using the EEG activity from all
channels; the technique can also be extended to other time-vary-
ing measures such as dynamic functional connectivity.

In conclusion, the output of the off-line analysis will be, inde-
pendently of the approach, one (or more) reference ER-FLBSs
(Fig. 3a) linked to a given target endpoint. For the sake of simplicity
and without loss of generality, we will in the following assume that
only one reference ER-FLBS has been identified by the adopted off-
line analysis.
5. Towards real-time identification of endpoint-related fast-
dynamic large-scale brain-states

Once the reference ER-FLBS has been (off-line) identified, a real-
time brain state-dependent stimulation protocol can be estab-
lished. As stated in the ‘‘Proposed conceptual definition of
large-scale brain states” section, all ER-FLBSs, and thus the refer-
ence ER-FLBS, must be such that when TMS is applied at their
occurrence, this results in an improvement in the targeted end-
point. In fact, repeated TMS during presence of the reference ER-
FLBS in the real-time measurement will change in line with that
observed off-line.

As a paradigmatic example, we consider the case, already dis-
cussed in the off-line analysis section, in which the target endpoint
is the amplitude of MEP and the reference ER-FLBS is a state of high
functional connectivity between regions in the motor network
(e.g., left M1 and SMA), as depicted in Fig. 3a. Thus, we expect
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higher MEP amplitude values when TMS at left M1 is delivered
at the ER-FLBS. To detect such ER-FLBS in the data stream, algo-
rithms to calculated dynamic functional connectivity in real time
are required (Basti et al., 2022) together with an appropriate data
preprocessing step. As raw streaming EEG data have an inherently
low signal-to-noise ratio, the noise can easily become a bottleneck
for efficient ER-FLBS detection. The non-neuronal noise can be sup-
pressed efficiently with appropriate spatial filters, which can either
be estimated directly from the streaming EEG data in an asyn-
chronous parallel process (Mutanen et al., 2022) or adapted from
pre-recorded training data, e.g., using independent component
analysis and beamforming (Hernandez-Pavon et al., 2022). The
streaming data is also a mixture of brain signals of interest and
other activity that can be considered as neuronal noise. To high-
light the ER-FLBS-relevant brain signals from the cortical nodes
of interest, either anatomy-based (Hauk and Stenroos, 2014;
Madsen et al., 2019) or functional-data-driven (Metsomaa et al.,
2021; Nikulin et al., 2011) spatial filters could be applied to the
multichannel data.

In Fig. 3b, we envision a pipeline to recognize the reference ER-
FLBS in real time. In this pipeline, we assume that a spatial filter
has been applied to sensor level (high-density, i.e., 128 channels
or more) EEG data to derive brain-level signals (Fig. 3b bottom
right). In practice, most brain state-dependent stimulation studies
rely on sensor-level signals to extract brain-state information. Nev-
ertheless, since the estimation of source activities from sensor-
space data in real time can be performed with fast processing (Li
et al., 2019), it is advisable considering source-level data to esti-
mate functional connectivity. Indeed, source space data can allevi-
ate some of the potential confounds of the sensor space analysis,
e.g., assumptions that might not always hold due to inter-indivi-
dual variability. Dynamic functional connectivity is thus estimated,
and its time course (Fig. 3b bottom left) is used to compare it to the
reference ER-FLBS, e.g., by adaptive threshold-based algorithms,
and target the stimulation. The comparison can also be performed
using a similarity metric, such as spatial correlation, between the
current and the reference ER-FLBS, so that if the current state is
similar to the reference, i.e., correlation is above a certain threshold,
the stimulation is triggered. In the case of a machine-learning-
based approach, the current signal will be the input of the trained
machine-learning model, which will classify it as reference ER-FLBS
or not, using the parameters fitted online, and then trigger the
stimulation when the current datapoint is labeled as reference
ER-FLBS.

An important aspect of the real-time detection of ER-LFBSs is
whether the above pipeline, or similar ones that can be conceived
to recognize the reference ER-FLBS with other methods, introduce
any delay between the time at which the current brain state is
being evaluated and the TMS-trigger timing. Usually, if the real-
time analysis (or at least part of it) is performed by a standard com-
puter, a variable delay of about 80 ms can be observed between the
data segment used to estimate functional connectivity and the
stimulation time (Vetter et al., submitted). This increases the risk
for the network’s connectivity to have already changed to another
state when the stimulus is delivered. Therefore, to accurately tar-
get a specific brain state, the real-time reference ER-FLBS detection
pipeline should run on a device optimized for real-time EEG pro-
cessing. Furthermore, since small delays will always be observed,
dedicated algorithms should predict the future evolution of the sig-
nal from its past in order to be able to estimate the reference ER-
FLBS also in the near future. For this purpose, we have developed
an algorithm based on deep learning (Pankka et al., 2021) that out-
performs the autoregressive models traditionally used for the pre-
diction (e.g., in Zrenner et al., 2018).



Fig. 2. Hidden Markov model approach to extract Endpoint-Related Fast-dynamic Large-scale Brain-states. Endpoint-Related Fast-dynamic Large-scale Brain States (ER-
FLBSs) as identified by a time-delayed embedded Hidden Markov Model approach (Vidaurre et al., 2018) on a group of 8 healthy volunteers (data described in Metsomaa
et al., 2021). (a) Topography of the power spectrum of the different states at the state peak frequency; (b) Averaged power spectrum of the states; (c) Distribution of duration
of the states; (d) Relative percentage of median Motor Evoked Potential (MEP) amplitude (with respect to global median of MEP amplitudes) for the different states. State 4
shows statistically higher MEP amplitudes in comparison to states 2, 3, 5 and 6 (Wilcoxon Rank Sum, one star indicates p < 0.05 and two stars indicate p < 001; Bonferroni
Correction for multiple comparisons).
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6. Towards large-scale stimulation of Endpoint-Related Fast-
dynamic Large-scale Brain-states

The application of real-time identification of ER-FLBSs in non-
invasive neuromodulation protocols needs to be supported by
the development of novel neurostimulation technologies. For
instance, delivering complex sequences of stimuli to follow the
rapidly changing neuronal dynamics across multiple brain sites is
currently unattainable using traditional TMS devices. A promising
new tool to overcome this limitation is the multi-locus TMS system
(mTMS) (Koponen et al., 2018). mTMS is a magnetic stimulator
capable of electronically changing the intensity, the location, and
the orientation of the induced electric field in the brain without
physically moving the coil set (coil set is sometimes referred to
as transducer) (Nieminen et al., 2022; Souza et al., 2022). Such
electronic control is achieved by simultaneously combining the
electric fields generated on the cortical surface by multiple over-
lapping coils. With mTMS, it is possible to target nodes of a neural
circuit with different parameters and within sub-millisecond inter-
vals (Nieminen et al., 2019; Souza et al., 2021; Tugin et al., 2021).
Electronic targeting also enables closed-loop automated stimula-
tion protocols based on physiological feedback from EMG (Tervo
et al., 2020) and EEG (Tervo et al., 2022) as endpoints. This demon-
strates the applicability of flexible targeting for refining the under-
standing of ER-FLBSs in an offline mode, as well as for an online
detection of the reference ER-FLBSs. For example, with mTMS, an
FLBS alteration could be addressed in context of sensitivity of
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neuronal populations to the orientation of the induced electric field
(Pieramico et al., 2023; Souza et al., 2022). Inversely, recruitment
of larger number of neurons can be achieved by applying the
TMS pulses with rotational fields (Roth et al., 2023), possibly
reducing the variability in estimation of reference ER-FLBS.
7. Conclusion and future directions

In this paper, we introduce the conceptual definition of End-
point-Related Fast-dynamic Large-scale Brain States (ER-FLBS) as
brain states exhibiting fast temporal dynamics and a large-scale
spatial distribution, together with being related to a targeted end-
point. While the aspects concurring to define ER-FLBS are not new
in neuroimaging, binding them together in a unified concept opens
new perspectives for advancing brain state-dependent stimulation.
ER-FLBSs can reliably be derived from off-line analysis of EEG–TMS
data and their definition is sufficiently broad to accommodate dif-
ferent methodological approaches for their identification with
respect to several possible endpoints. A reference ER-FLBS can thus
be off-line defined and, importantly, be detected in an on-line
experiment such that its occurrence can be considered as a land-
mark in time (and space) to trigger brain stimulation. The specific
on-line approach for the detection of the reference ER-FLBS
depends on the type of ER-FLBS and on the strategy for its off-line
identification. In any case, to ensure on-line data processing, a
dedicated real-time hardware must be employed. The required



Fig. 3. Exemplary pipeline for the integration of off-line and on-line identification of Endpoint-Related Fast-dynamic Large-scale Brain-state. The pipeline considers
Endpoint-Related Fast-dynamic Large-scale Brain-states (ER-FLBSs) identified by means of the functional connectivity approach. (a) Off-line identification: identify specific
functional connectivity patterns as Fast-dynamic Large-scale Brain-states and assess which of them are related to the desired targeted endpoint to define one or more
reference ER-FLBSs that we aim at targeting on-line. (b) On-line identification: estimate dynamic functional connectivity from electroencephalography (EEG) in real time and
identify the presence of the reference ER-FLBS, deliver TMS when the reference ER-FLBS is present in order to enhance the probability of eliciting the desired endpoint (e.g.,
behavioral, peripheral, brain response).
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temporal resolution of this hardware must be such that the refer-
ence ER-FLBS is detected within a timeframe smaller than its dura-
tion, which we hypothesize here to be at least tens of milliseconds.
This will ensure that the stimulation is delivered when the refer-
ence ER-FLBS is still the ongoing brain state. Although not strictly
necessary, it might be useful to also employ a dedicated software
for on-line visualization of ongoing brain states. Ultimately, the
real-time identification of the reference ER-FLBSs should inform
adaptive closed-loop algorithms (described in detail in a compan-
ion paper Rösch et al.) which deliver complex neuromodulation
protocols through an mTMS system for the large-scale modulation
of FLBSs.

To determine the impact of the ER-FLBS-based strategy on brain
state-dependent stimulation, further studies are needed in basic
and clinical neuroscience. In this framework, this approach needs
to be tested with other brain networks (outside motor cortex)
and other endpoints (including behavioral endpoints). It will also
be relevant to investigate whether a combination of local and
long-range brain states or the co-occurrence of different ER-FLBS
can be considered to be second-level brain states that can further
improve the stimulation impact.

Finally, a new frontier for state-dependent stimulation could be
to leverage network physiology approaches to expand the concept
of ER-FLBS to brain–body states rather than just brain states.
201
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