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1. From neuroscience-inspired AI to AI-based personalized
treatment

Artificial intelligence (AI) has been defined as the theory and
algorithms that enable machines to learn, reason, and solve prob-
lems, also in the way human beings do so. Neuroscience has always
had a reciprocal information flow with the field of AI. On the one
hand, most AI algorithms are inspired by the human brain. The
field of neuroscience has not only provided a source of inspiration
for AI algorithms, but it also presented the possibility to validate
certain algorithms if they were found to be used in the brain. On
the other hand, AI algorithms introduced revolutionary transitions
in the field of neuroscience. An important example is the highly
efficient and accurate analysis of neuroimage datasets. However,
a huge contribution of AI in neuroscience lies in the field of rein-
forcement learning (RL). This field has been inspired by animal
learning, and as the name reveals, involves learning the best
behavior that achieves the desired reward by reinforcing the
actions that lead to higher rewards as feedback from the surround-
ing environment (Hassabis et al., 2017).

While RL has been extensively used for research purposes to
advance our understanding in the field of neuroscience, it has
many potential applications in the fields of medical neuroscience
and computational neurology (Maia and Frank, 2011). After dec-
ades of traditional therapy, scientists have realized that the intra-
individual differences in terms of environmental, biological, and
psychosocial factors should be investigated, a concept that has
been termed ‘‘precision medicine”. Furthermore, these differences
should be taken into account when new treatment is planned, so
that it would be tailored according to the specific characteristics
of the patient receiving it, a direction called ‘‘personalized
medicine” (Carbonara et al., 2022). This movement has so far tar-
geted traditional therapy, including drug and non-drug treatments.
However, there is a need to extend this concept to novel therapeu-
tic techniques such as transcranial magnetic stimulation (TMS).

TMS has emerged as a safe and painless neuromodulation tech-
nique that utilizes the electromagnetic field to induce spatiotem-
poral dynamics of cortical excitability in the brain (Siebner et al.,
2022). Recently, TMS has been combined with electroencephalog-
raphy (EEG) (Hernandez-Pavon et al. 2023), which detects the elec-
trical neuronal population activity in the brain with electrodes on
the scalp, to enable delivery of TMS pulses on targeted brain
regions triggered by ongoing neuronal oscillations, called brain
state-dependent stimulation, and precise modulation of brain
activity (Zrenner et al., 2018).

The journey towards ‘‘personalized TMS’’ should begin with a
clear definition of the required elements. While it is challenging
to identify all aspects, one possible approach is to start from an
identification of the limitations encountered with the current
TMS approaches. For example, single-site TMS limiting modulation
of distributed neuronal networks, and open-loop TMS uninformed
of the ongoing neuronal activity in the stimulated network limiting
precise temporal targeting of brain states that would be particu-
larly receptive for causing a desired modification of this network.
Hence, we envisage that the following aspects would constitute
four important pillars of future TMS applications in research and
therapy:

1. Technology to move beyond single-channel TMS towards multi-
node brain stimulation at the network level by designing multi-
locus TMS (mTMS) transducers (Nieminen et al., 2022; Sinisalo
et al., 2024).

2. Algorithms for real-time analysis of EEG data to determine the
desired brain state for triggering TMS or mTMS (e.g., phase
and/or power of ongoing brain oscillations, brain network con-
nectivity measures) (Marzetti et al., 2023).

3. Methods to modulate the brain state based on precise individ-
ual characteristics in an adaptive closed-loop manner.
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4. Adaptation of points 1, 2 and 3 in clinical practice, for example
to support motor recovery in stroke patients (Rösch et al.,
2024).

In this paper, we discuss the third aspect towards achieving
personalized TMS. We propose a method to close the loop in
TMS applications, by adapting the stimulation parameters on the
fly based on the neurophysiological feedback from the person
receiving TMS. We then illustrate this concept using a proof-of-
concept experiment to show the practical application of a novel
closed-loop real-time TMS setup.

2. From open-loop, off-line TMS to reinforcement learning-
based, closed-loop, real-time TMS

In the conventional application of TMS, a coil is placed in con-
tact with the subject’s head over the targeted region, and a pre-
defined pulse is initiated without considering the ongoing endoge-
nous neural oscillations. This approach, known as open-loop TMS
(Bergmann, 2018), typically relies on brain activity solely for
post-experiment data analysis. Meanwhile, brain state-dependent
TMS, which takes into account the ongoing activity measured by
real-time EEG, is still considered open-loop TMS (Fig. 1A). A
closed-loop brain state-dependent stimulation paradigm has been
proposed to overcome the limitations of ignoring the modulation
outcome (Bergmann, 2018). The key differentiation between
closed-loop and open-loop (EEG–TMS) systems is grounded in
the direct utilization of output data (psychological or physiologi-
cal) from the previous pulse, either during offline learning
(Fig. 1B), or in conjunction with real-time monitoring of the brain
state using EEG, subsequent to deliver the next pulse (Fig. 1C).

In a real-time machine learning-based approach, an initial set of
parameters (e.g., stimulation parameter or specific brain state)
define the first TMS pulses or their timing. Data collected during
the ongoing stimulation give feedback to an inference model that
optimizes, using machine learning algorithms, the stimulation
parameters based on predefined functions or thresholds (e.g.,
desired brain state). Then, the output (readout of the resulting
effect of the previous TMS pulse) is fed back into the stimulator
to close the loop for the next round of stimulation; iterations con-
tinue until the predefined functions or thresholds are satisfied
(Fig. 1C). This real-time inference mode-based approach has been
reported by a previous study, which utilized beta and alpha power
as the brain state to trigger transcranial direct current stimulation
in a closed-loop manner (Leite et al., 2017). Several studies have
explored the possibility of a real-time machine learning-based
approach in a closed-loop TMS protocol, such as automatically
optimizing the pulse amplitude and width (Alavi et al., 2023), stim-
ulation location for the largest MEP amplitude (Tervo et al., 2020),
automated hotspot hunting for the lowest motor threshold
(Meincke et al., 2016) and TMS-induced current orientation for
the largest TMS/EEG responses (Tervo et al., 2022). Up to now, no
study has been reported to specifically target the modulation of
network-based brain states in a real-time closed-loop EEG–TMS
manner.

3. A proof-of-concept experiment on real-time closed-loop
EEG–TMS

We will illustrate here an experiment that includes repetitive
TMS (rTMS) of a two-node brain network and determination of
the optimized value of a stimulation parameter through closed-
loop EEG-informed real-time reinforcement learning.
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3.1. Reinforcement learning (RL) algorithm

The concept of reinforcement learning involves training an
algorithm (Agent) to make decisions (Actions) that will affect the
surrounding medium (Environment). Then, based on the results of
these decisions (Observations), a certain value is calculated and
provided as feedback to the algorithm (Reward).

The equivalent elements in our experiment are as follows:

1) The target network to be stimulated (Environment):

The target network is composed of the supplementary motor
area (SMA) and the primary motor cortex (M1) in a condition-
ing–test stimulus protocol, such that the conditioning stimulus is
applied over the SMA-proper (stimulation intensity 140% of active
motor threshold over M1) and the test stimulus over the hand area
of M1 (stimulation intensity to elicit MEPs of on average 1 mV in
peak-to-peak amplitude). In previous experiments, we and others
have performed similar paired-pulse stimulation of the SMA–M1
network and demonstrated paired-pulse SMA-to-M1 facilitation
as a measure of effective connectivity between these two nodes
when an interstimulus interval of 6 ms was used (Arai et al.,
2012; Arai et al., 2011; Neige et al., 2023). The location of M1 (hot-
spot) stimulation was manually searched as the point consistently
resulting in largest MEP amplitudes. To determine the best location
for SMA stimulation, a second coil was placed around 4 cm anterior
to the vertex (Cz according to the 10–20 International EEG System)
and the spot resulting in strongest SMA-to-M1 facilitation was
determined. At each site of SMA stimulation, 10 paired-pulse trials
with stimulation of SMA-M1 and 10 single-pulse trials with stim-
ulation of M1 only were obtained, and SMA-to-M1 facilitation was
calculated by the ratio of the mean MEP amplitude resulting from
paired-pulse stimulation of SMA-M1 over the mean MEP ampli-
tude resulting from single-pulse stimulation of M1. The location,
angulation and orientation of the two coils were monitored with
a neuronavigation system (Localite GmbH, Sankt Augustin, Ger-
many) throughout the experiment. Whenever either of the two
coils slipped away by >5 mm, the experiment was briefly halted
and the coil was returned onto its original target position.

2) The stimulation parameter to be optimized (Action):

We used rTMS, which is capable of inducing aftereffects in the
human brain that outlast the period of stimulation. These afteref-
fects are thought to reflect plasticity processes in the human brain
(Cooke and Bliss, 2006; Hoogendam et al., 2010; Ziemann et al.,
2008). Different phases of human EEG oscillations represent differ-
ent excitability states of the brain (Buzsaki and Draguhn, 2004).
Triggering rTMS at specific EEG-informed excitability states leads
to differential plasticity-like effects (Baur et al., 2020; Gordon
et al., 2022; Zrenner et al., 2018), with high potential to enhance
the effects of rTMS-induced plasticity. The phase of the endoge-
nous sensorimotor l-rhythm is the stimulation parameter that
we tried to adaptively optimize. We defined eight discrete phase
bins that were sampled from [�p, p] as follows: [� 7

8p, � 5
8p,

� 3
8p, � 1

8p,
1
8p,

3
8p,

5
8p,

7
8p].

3) The primary output (Observation):

We aimed at maximizing SMA-to-M1 facilitation, as measured
by the ratio of the MEP amplitude resulting from paired-pulse
SMA–M1 stimulation over the MEP amplitude resulting from
single-pulse stimulation of M1.



Fig. 1. A schematic illustration of open-loop brain state-dependent repetitive transcranial magnetic stimulation (rTMS) (A), offline learning-based brain state-dependent
rTMS (B) and closed-loop real-time brain state-dependent rTMS (C). TMS: transcranial magnetic stimulation, EEG: electroencephalography, MEP: motor evoked potential.
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4) The optimization algorithm (Algorithm):

We employed an RL algorithm according to the method of
Deep-Q Learning (DQN) (Watkins and Dayan, 1992). This algorithm
implements a deep neural network to approximate the query func-
tion under the framework of reinforcement learning. The agent in
DQN learns by providing rewards/penalties for the actions taken
via interacting with the surrounding environment. The agent oper-
ates by selecting decisions for the next actions to achieve a higher
cumulative reward.

5) The feedback to the algorithm (Reward):

At each time step, the agent receives an observation, which is
the SMA-to-M1 facilitation (see above, for definition). This value
is then used to calculate the reward of choosing this action. We
arbitrarily set a target facilitation effect of 1.5 times the baseline
SMA-to-M1 facilitation (i.e., prior to learning), and defined the
reward function as follows:

Reward ¼ current SMA� to�M1 facilitation � 1:5 � baseline SMA

� to�M1 facilitation

Based on this reward value, the agent decides on the next
action, i.e., picking a l-rhythm phase bin out of the eight options
to trigger in the next pulse to increase the reward.

3.2. Running the experiment

The experiment was approved by the local ethics committee of
the medical faculty of the University of Tübingen (Project Number
525/2021BO2); subjects including those of pilot sessions were
tested only after written informed consent was provided. Scalp
EEG was recorded from a TMS compatible 64-channel Ag/AgCl sin-
tered ring electrode cap (EasyCap GmbH, Germany), and surface
EMGwas recorded through bipolar electromyography (EMG) adhe-
sive hydrogel electrodes (Kendall, Covidien) over the first dorsal
interosseus muscle of the right hand. TMS of the left SMA proper
was delivered using a Cool-B35 HO coil connected to a MagVenture
MagPro X100 stimulator including MagOption with a monophasic
current waveform, while the test pulse over the left M1 was deliv-
ered through a Cool-B35 HO coil connected to a MagVenture Mag-
Pro R30 stimulator with a biphasic current waveform. The site of
M1 stimulation was determined according to standard hot spot
search methods, with the coil oriented 45� away from the midline
to induce a posterior-to-anterior current in M1 for the second
phase of the biphasic stimulus (Groppa et al., 2012). The site of
SMA stimulation was determined with the coil oriented so that
the monophasic stimulus was oriented right-to-left towards the
targeted left-hemispheric SMA (Arai et al., 2012) and by mapping
several sites for the optimal SMA-M1 MEP facilitation. The experi-
ment started by initiating the training of the RL agent (Reinforce-
ment Learning Toolbox, MATLAB R2021a), which initially picked
a random phase of the sensorimotor l-rhythm to trigger the next
pulse. Phase targeting was enabled by EEG real-time analysis and
forward prediction using the Brain Oscillation State Sensor (BOSS)
device (sync2brain, Germany). At each learning step of the RL
agent, 2 paired pulses to SMA-M1 were triggered, and every 4
steps, 2 single pulses to M1 were triggered. The inter-trial interval
(ITI) was set to 2–3 s. Then, the SMA-to-M1 facilitation was
obtained for this step and used to calculate the reward value. This
was then provided to the RL agent. As iterations continued,
improved actions that induced a higher SMA-to-M1 facilitation
resulted. At the end of the learning, the agent kept targeting the
phase yielding the highest SMA-to-M1 facilitation. The agent was
trained over a period of approximately 1 hour for ten episodes in
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total, with each episode containing 40 steps (i.e., 10
episodes � 40 steps � 2 trials = 800 trials for training). The BOSS
device monitored the ongoing EEG activity and enable triggering
of the magnetic stimulators only, if a predetermined power thresh-
old of the sensorimotor l-rhythm was exceeded (Zrenner et al.,
2018).

We tested the pipeline on simulated data, where targeting a
specific phase would yield the highest SMA-to-M1 facilitation.
We found that the algorithm is able to find the optimal phase.
On the simulated data, we compared two RL algorithms, a simple
Q-learning table and a deep Q-learning agent. We found that the
simple Q-learning table agent increased the reward faster, by more
quickly identifying the phase associated with highest SMA-to-M1
facilitation, while the deep Q-learning agent needed a longer learn-
ing time while still managing to identify the best state (Humaidan
et al., 2021). The results are shown in Fig. 2A.

Then, we ran the DQN algorithm on real data in an experiment
on one subject, as detailed above. Based on our experience with
simulated data, we updated the RL parameters when applying
the algorithm on real data. The used values are listed in Table 1.

We demonstrated that, similar to the simulation, the algorithm
also learned on real data within 5 episodes (i.e., 400 trials) and
then maintained the performance over the remainder of the learn-
ing period (Fig. 2B-C).
4. Conclusion, discussion, and perspective

From efficient analysis of neuroimaging datasets to accurate
analysis of EEG signals to predict epileptic seizures, artificial intel-
ligence has revolutionized theoretical and applied neuroscience.
This conceptual paper aims to introduce a vision of artificial intel-
ligence-based personalized TMS. Using a real-time closed-loop
EEG–TMS setup, TMS can be most efficient by adaptively assigning
the stimulation parameters to achieve the desired maximum effect
for the specific treated individual at the current conditions. We
illustrated this vision through a practical application of a truly
adaptive closed-loop EEG–TMS setup to enhance effective connec-
tivity between two brain areas in healthy individuals. This was
achieved by utilizing reinforcement learning algorithms to train
an agent that could automatically select the optimal phase of an
ongoing local brain oscillation to induce a higher facilitation effect
between the two nodes in the targeted brain network. This closed-
loop approach allows tailoring the stimulation parameters based
on the specific feedback received from each subject towards
achieving the most optimal effect as defined by the research ques-
tion. This will address inter-individual and even intra-individual
variability as major limitations of current open-loop TMS applica-
tions (Hamada et al., 2013). Also, a general model for a given indi-
vidual can be saved and used for later TMS sessions, but may need
to be fine-tuned in subsequent sessions of the same individual, as
there might be significant inter-session differences due to modifi-
able factors such as time of day, prior activity, or alertness at the
time of the TMS experiment (Ridding and Ziemann, 2010).

The real-time approach allows us to overcome the need for
large amounts of pre-training data and reduces the effect of priors
from the professionals. However, an extension of the proposed
proof-of-concept closed-loop TMS experiment necessitates
addressing further limitations. On the one hand, optimizing the
stimulation parameters on the fly within the limited training time
means that the inference model will be using only limited data,
which can result in instability and difficulties in learning with
complicated algorithms. In addition, in a truly closed-loop system,
data are processed and managed in real-time scenarios, which
poses significant challenges given current software and hardware
limitations. For instance, high-dimensional EEG data must be ana-



Fig. 2. (A) The learning curves of DQN (blue) and simple Q-table (red) algorithms on simulated data. Please note that 350 episodes were used for learning. (B) The learning
curve of the agent on real data from one subject. (C) The change in the SMA-to-M1 facilitation in the course of the learning. Note that the targeted increase of a 1.5-fold
increase in SMA-to-M1 facilitation compared to baseline was reached and then maintained already after 5 episodes. DQN: Deep-Q Network, SMA: supplementary motor area,
M1: primary motor cortex.

Table 1
The parameter values used in the reinforcement learning (RL) algorithm.

Parameter Value

Deep-Q Network (DQN) Three fully connected layers (neurons: 12, 8, 8) and
one Long Short-term Memory (LSTM) unit (10
neurons) (Hochreiter and Schmidhuber, 1997)

Activation function Rectified linear unit function (ReLU)
Learning rate 0.001
MiniBatchSize 32
ExperienceBufferLength 50
EpsilonDecay 0.005
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lyzed in real time to extract the desired brain state parameters at
the network level. Moreover, the high-dimensional EEG data
demand complex tools for denoising, and some methodologies,
such as source reconstruction and functional connectivity, require
high computational resources that can only be provided by hard-
ware support such as AI chips and GPUs (Graphic Processing Units).
On the other hand, the tens of milliseconds duration of brain state
status changes leave only a narrow time window for preparing all
the necessary parameters for the next round of stimulation. In
clinical practice, clinicians may find retrospective data analysis
for optimization of stimulation parameters more intuitive and
explainable rather than black-box style updates within the
adaptive closed-loop system. Lastly, an easy-to-use graphical user
interface and an efficient API (Action Programming Interface) are
indispensable in clinical settings. Despite various issues in this
216
application, the implementation of this paradigm has gained
extreme attention and continues to evolve towards providing
precise, personalized, and intelligent noninvasive brain stimulation
therapies in the treatment of neurological disorders.
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