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Abstract

Recent magnetoencephalography (MEG) studies have reported that functional

connectivity (FC) and power spectra can be used as neural fingerprints in dif-

ferentiating individuals. Such studies have mainly used correlations between

measurement sessions to distinguish individuals from each other. However, it

has remained unclear whether such correlations might reflect a more general-

izable principle of individually distinctive brain patterns. Here, we evaluated a

machine-learning based approach, termed latent-noise Bayesian reduced rank

regression (BRRR) as a means of modelling individual differences in the

resting-state MEG data of the Human Connectome Project (HCP), using FC

and power spectra as neural features. First, we verified that BRRR could model

and reproduce the differences between metrics that correlation-based finger-

printing yields. We trained BRRR models to distinguish individuals based on

data from one measurement and used the models to identify subsequent mea-

surement sessions of those same individuals. The best performing BRRR

models, using only 20 spatiospectral components, were able to identify subjects

across measurement sessions with over 90% accuracy, approaching the highest

correlation-based accuracies. Using cross-validation, we then determined

whether that BRRR model could generalize to unseen subjects, successfully

classifying the measurement sessions of novel individuals with over 80% accu-

racy. The results demonstrate that individual neurofunctional differences can

be reliably extracted from MEG data with a low-dimensional predictive model

and that the model is able to classify novel subjects.

Abbreviations: AAL, automated anatomical labelling; AEC, amplitude envelope correlation; BRRR, Bayesian reduced rank regression; cAECp,
amplitude envelope correlation with pairwise orthogonalization; cAECs, amplitude envelope correlation with symmetric orthogonalization; Coh,
coherence; FC, functional connectivity; HCP, Human Connectome Project; ICA, independent component analysis; iCoh, imaginary coherence; iPLV,
imaginary phase locking value; LCMV, linearly-constrained minimum-variance; MEG, magnetoencephalography; PCA, principal component
analysis; PLI, phase lag index; PLM, phase linearity measurement; PLV, phase locking value; PSD, power spectral density; ROI, region of interest; t-
SNE, t-distributed Stochastic Neighbour Embedding; wPLI, weighted phase lag index.
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1 | INTRODUCTION

Every brain is shaped by a unique combination of biolog-
ical factors and environmental influences. Therefore, we
may expect unique patterns in the signals generated by
each individual brain. Indeed, several studies have
reported that it is possible to differentiate individuals
based on their functional neuroimaging data (e.g., da
Silva Castanheira et al., 2021; Finn et al., 2015). So far,
such studies have mainly used summary statistics, such
as functional connectivity (FC) or power spectra, to
compute correlations between different measurement
sessions of the same participants. Even though such
correlations can be used as neural fingerprints to identify
individuals within a specific subject group, it remains
uncertain which factors contribute to the identifiability,
and whether there are more fundamental principles of
“uniqueness” that are generalizable beyond a specific
subject group. Accessing the neuroimaging features that
contribute to successful neural fingerprinting could
importantly contribute to understanding interindividual
neurofunctional dis/similarity in both health and disease.

In the present study, we utilize latent-noise Bayesian
reduced rank regression (BRRR) for building a computa-
tional model to assess the differentiation between indi-
viduals based on different features of neural signals (FC,
power spectra). Latent-noise BRRR assumes that the
noise and the covariates affect the target variables (here
FC and power spectra) through the same latent space,
and it is, therefore, well suited for modelling weak
effects in high-dimensional brain imaging data where the
chosen covariates (e.g., age, a gene) explain only a small
part of the variance in the target variables (Gillberg
et al., 2016). The reduced rank restriction of the model
allows for determining a low-dimensional representation
of the target variables based on the chosen covariates.
Thus, latent-noise BRRR can be used to simultaneously
reduce the dimensionality of data and learn latent
components that maximally differentiate between subject
groups defined by the covariates. Here, we apply BRRR
in modelling individual differences, so each subject is
defined as their own group.

BRRR offers several benefits that are not available
with model-free approaches, such as Pearson correla-
tions. Since BRRR is a model, it can be trained on one set
of subjects and applied to another set of subjects. This
could help to assess the consistency of neurofunctional

interindividual differences across datasets. Even within
a single dataset, BRRR can be used to interrogate the
differences underlying within-subject correlations of
certain FC metrics, by examining the relationship
between latent components and different metrics and
frequency bands. BRRR further allows for multiple
variables to be incorporated into the model, for example,
one may combine FC data with demographic, cognitive
and/or clinical data.

In a previous study, BRRR was used to extract latent
components from magnetoencephalography (MEG)
power spectra based on sibling relations: the extracted
components successfully differentiated families from
each other (Leppäaho et al., 2019). In that study, the
authors chose power spectra as the measure of interest,
given its straightforward computation and wide usage.
The results of Leppäaho et al. (2019) demonstrated that
BRRR works with sensor-level power spectra. In this
study, we extend the analysis to source-level data and to
FC metrics. Use of different FC metrics has gained
increasing interest both in basic research and in clinical
settings, for example, in predicting cognitive decline
(e.g., Pusil et al., 2019; Vecchio et al., 2018). Here, our
aim was to determine whether BRRR can model previ-
ously reported differences between FC metrics and fre-
quency bands, what amount of model complexity
(i.e., number of latent components) is required to capture
the individual uniqueness of the metrics, whether the
model is stable and whether it can model novel individ-
uals not included in the training set. This study will serve
as a solid foundation for future work in modelling
differences between individuals.

FC metrics measure synchronization between pairs of
signals. Since there are various ways to quantify signal
properties, numerous FC metrics have been proposed
(Bastos & Schoffelen, 2016; Colclough et al., 2016; O’Neill
et al., 2015). In the present work, we focused on static FC
metrics, as they are more commonly used than dynamic
FC metrics and thus allow comparison of the results to
existing literature. Generally, FC metrics quantify connec-
tivity based on coherence between the phases of the sig-
nals (phase coupling) or based on the correlation between
the amplitudes of the signals (amplitude coupling). Phase
and amplitude coupling have been suggested to be the
two primary coupling modes between neuronal oscilla-
tions, and they may reflect partly distinct neural mecha-
nisms (Engel et al., 2013; Siems & Siegel, 2020).
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In MEG, activity of a neuronal source is detected by
several close-by sensors, and each sensor detects signals
from several neuronal sources. Thus, there are correla-
tions between sensor signals, which are not caused by
real neural interactions. This effect called field spread
can be mitigated, although not completely eliminated, by
source reconstruction (Schoffelen & Gross, 2009).
Because field spread is instantaneous, approaches for
eliminating the artificial interactions by discarding inter-
actions with zero phase lag have been proposed (Baselice
et al., 2019; Brookes et al., 2012; Colclough et al., 2015;
Hipp et al., 2012; Nolte et al., 2004; Stam et al., 2007;
Vinck et al., 2011). However, this is done at the expense
of losing real zero-lag interactions. To explore its effect,
we here compared methods with and without field spread
correction. We trained both sensor and source space
models; the sensor space results can be found in the sup-
plemental material.

In the present work, latent-noise BRRR was applied
to MEG resting-state data from Human Connectome Pro-
ject (HCP). Our first step was to verify that BRRR could
model the differences between metrics that have been
previously reported for correlation-based fingerprinting.
Thus, we reproduced the correlation-based fingerprinting
results for reference. Then, various BRRR models were
trained to differentiate between individuals based on
power spectra or FC from one measurement session. The
latent components of the different models were used to
identify subsequent measurement sessions of the individ-
uals, and the identification accuracy of a given model
was compared with other models. The latent spaces of
the different models were compared by computing, for
each model, the distance matrix among all participants.
Our second objective was to determine whether the
BRRR model could further classify the measurement ses-
sions of previously unseen subjects, based on the metrics
that were most successful in our first analysis.

2 | MATERIALS AND METHODS

2.1 | HCP data

The resting-state MEG data of the Human Connectome
Project (HCP) (Larson-Prior et al., 2013; Van Essen
et al., 2013) were collected using a whole head Magnes
3600 (4D Neuroimaging, San Diego, CA, USA) system
with 248 magnetometer channels and 23 reference chan-
nels. The MEG resting-state data included 89 subjects
aged between 22 and 35 years. Most of the subjects had
either a monozygotic or a dizygotic twin in the dataset
(33 sibling pairs in total). The resting-state data of each
subject consisted of three consecutive resting-state

recordings that were around 6 min in length each. The
participants had their eyes open during the recordings.
The MEG data had been passed through the HCP
preprocessing pipeline with removal of poor-quality
channels and segments, bandpass filtering (1.3–150 Hz),
notch filtering to remove power line noise (at 59–61 Hz
and 119–121 Hz), and removal of cardiac and
eye-movement artefacts based on independent compo-
nent analysis (ICA).

2.2 | MEG data processing

The code used for the analysis is available on the GitHub
page of the Imaging Language Group: https://github.
com/AaltoImagingLanguage/Haakana2023.

2.2.1 | Source reconstruction

The FieldTrip toolbox (Oostenveld et al., 2011) was used
to perform source reconstruction. The HCP dataset con-
tains three-dimensional source models of all the subjects,
based on the individual structural MRIs, defined on a
regular grid of different resolutions in normalized MNI
space. An 8 mm grid was chosen, and source reconstruc-
tion was done using linearly-constrained minimum-
variance (LCMV) beamforming (Van Veen et al., 1997).
The source timeseries were clustered using principal
component analysis (PCA) into 116 regions of interest
(ROIs) defined by the automated anatomical labelling
(AAL) atlas (Tzourio-Mazoyer et al., 2002).

2.2.2 | Power spectra

Power spectral density (PSD) was computed for each
region of interest (ROI) using Welch’s method. This was
done using the default settings of Matlab R2022a: the sig-
nals are divided into maximum of eight segments with
50% overlap, and a Hamming window is applied to the
segments. The PSD was split into 21 frequency bands
within which a mean value was computed. The fre-
quency bands were defined similarly to Leppäaho et al.
(2019), such that the first band was 1–3 Hz, and the sub-
sequent bands were linearly widened up to a band of
81.8–87.8 Hz.

2.2.3 | Functional connectivity

The source-space data was filtered into delta (1 – 4 Hz),
theta (4 – 8 Hz), alpha (8�13 Hz), beta (13�30 Hz), and

HAAKANA ET AL. 3

 14609568, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16292 by U

niversity O
f H

elsinki, W
iley O

nline L
ibrary on [15/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/AaltoImagingLanguage/Haakana2023
https://github.com/AaltoImagingLanguage/Haakana2023


gamma (30�50 Hz) bands. Similar frequency bands have
been used in prior studies of FC fingerprinting (da Silva
Castanheira et al., 2021; Sareen et al., 2021), allowing for
comparison of the results. FC was computed between
ROIs in the five frequency bands. Several common static
FC metrics were used (Table 1). Hilbert transform was
used to obtain the analytic signals, from which the ampli-
tude envelope and the instantaneous phase were
extracted to compute the amplitude metrics and phase
metrics, respectively.

2.3 | Latent-noise BRRR

Latent-noise BRRR is defined as

Y¼ XΨþΩð ÞΓþE,

where YN�P contains the P-dimensional MEG data with
N observations (the experimental subjects), XN�M con-
tains covariates for M predictors, ΨM�K contains low-
dimensional regression coefficients for the K-dimensional
latent space, ΩN�K contains unknown latent factors
(i.e., noise in the latent space), ΓK�P mediates the effects
of both covariates and noise on the target variables
(i.e., it is a projection of the latent space to the observa-
tional space) and EN�P is independent noise in the obser-
vational space.

Latent-noise BRRR can be used to learn a
K-dimensional representation of the observed data Y that
is maximally informative with regard to the selected cov-
ariates X , for example, age groups of the subjects or
familial relations between the subjects. Latent-noise

BRRR is designed especially for modelling weak effects,
accounting for only a small part of the variance, in high-
dimensional data (Gillberg et al., 2016). In the
independent-noise formulation of BRRR, the signal and
the noise are assumed to be independent, which can
result in weak relationships being hidden by the noise.
Therefore, in latent-noise BRRR the signal of interest X
and the noise Ω are mediated through the same latent
space, allowing for the signal model to borrow strength
from the noise model (Gillberg et al., 2016).

To solve the inherent rotational unidentifiability of
the reduced rank regression, shrinkage priors are set for
the coefficients Ψ and Ω as well as the projection matrix
Γ, enforcing the components with the strongest effects to
the first columns/rows (Gillberg et al., 2016). We fol-
lowed Leppäaho et al. (2019) in defining the priors. The
rows k of Γ and the columns k of Ψ and Ω were given
the priors

γkj j τk �N 0,τ�1
k

� �
, ψ jk j τk �N 0,τ�1

k

� �
, ωjk j τk

�N 0,10�6τ�1
k

� �
,

where τk is defined as

τk ¼
Yk

l¼1

δl, δ1 �G 10,1ð Þ, δl>1 �G 4:1,1ð Þ

and where N is the normal distribution and G is the
gamma distribution of shape and rate. This procedure
enforces higher shrinkage for higher k since the expected
values for the gamma distribution are positive.

TAB L E 1 FC metrics used in the study. The metrics differ with respect to the coupling type and whether the metric is corrected for

signal leakage.

Connectivity metric Abbreviation
Coupling
type

Leakage
corrected Reference

Amplitude envelope correlation with symmetric
orthogonalization

cAECs Amplitude Yes Colclough et al.
(2015)

Amplitude envelope correlation with pairwise
orthogonalization

cAECp Amplitude Yes Brookes et al. (2012)

Imaginary coherence iCoh Phase Yes Nolte et al. (2004)

Imaginary phase locking value iPLV Phase Yes Bruña et al. (2018)

Phase lag index PLI Phase Yes Stam et al. (2007)

Weighted phase lag index wPLI Phase Yes Vinck et al. (2011)

Phase linearity measurement PLM Phase Yes Baselice et al. (2019)

Amplitude envelope correlation AEC Amplitude No O’Neill et al. (2015)

Coherence Coh Phase No Nunez et al. (1997)

Phase locking value PLV Phase No Lachaux et al. (1999)

4 HAAKANA ET AL.
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2.3.1 | Model training

BRRR models were trained using MEG power spectra
and FC metrics (see Table 1). One model was trained
with power spectra, while with each FC metric, five dif-
ferent models were trained, one for each frequency band
(see Figure 1a–b); training a single model per FC metric
would have been computationally overly demanding.
The number of observations N (i.e., the experimental

subjects) was 89 with all models, but the dimension P of
the target variable matrix Y depended on the feature. It
was 21�116 (frequency bands � ROIs) with power spec-
tra and 116�116 (ROIs � ROIs) with FC. The identifier
matrix X identified each subject as their own class. When
the models were trained with sensor space data, only
every second channel (A1, A3, A5, …) was used to reduce
the computation time, so the dimensions were 124�124
with FC and 21�124 with power spectra (see Figure S1

F I GURE 1 (a)–(b) Overview of the analysis pipeline for using power spectra (a) and FC metrics (b) as features. BRRR models were

trained with each feature to learn latent components that maximally differentiate between individuals. In the case of FC, separate models

were trained with data at each frequency band. (c) The latent components of one model visualized in 2-dimensional space using t-distributed

stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008). Each colour denotes the measurement sessions of one subject.

Cosine distances were computed between the latent components of the training sessions and test sessions across all the subjects. (d) Distance

matrices from two different models. The distance matrix of a given BRRR model contains the cosine distances between the latent

components of all the subjects N and three measurement sessions per subject. Mantel test was computed between two distance matrices to

assess the similarity of their latent spaces.

HAAKANA ET AL. 5
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for the locations of the included and excluded sensors).
Results for the models trained with sensor space data can
be found in the Supplementary material.

The steps presented in Leppäaho et al. (2019) were
followed in training the models. The regression coeffi-
cients Ψ and the projection matrix Γ were initialized so
that the identifier matrix X explains the maximum
amount of variance in the target variables Y and that
each latent component explains less variance than the
previous component. The parameters were inferred using
Gibbs sampling with 500 iterations, of which the first
250 iterations were discarded as the burn-in period.

2.3.2 | Model accuracy

Each subject had MEG data from three consecutive
resting-state sessions. In the following, we will use the
naming convention of the HCP dataset and refer to these
resting-state sessions as “3-Restin”, “4-Restin” and
“5-Restin”, respectively. The models were trained with
the first resting-state session (3-Restin), while the two
subsequent measurement sessions (4-Restin, 5-Restin)
were used as test sets in computing the accuracy of the
model. Results for models trained with the two other ses-
sions can be found in the Supplementary material.

Accuracy was estimated as follows. First, the inverse
of the projection matrix Γ (computed from the first
resting-state session of the subjects) was used to project
all the resting-state data to the latent space. In the latent
space, cosine distances were calculated between the com-
ponents of the training sessions and the components of
the test sessions (Figure 1c). Cosine distance was chosen
because it is rotationally invariant. If the training session
closest to a test session was of the same experimental sub-
ject, classification was considered successful for that test
session. Since each subject had two test sessions, two pre-
dictions were made for each subject, so the number of
correct classifications per subject was either 0, 1 or 2. The
total number of correct classifications was divided by the
total number of predictions (2N), resulting in the accu-
racy score of each trained model.

The identification accuracies computed from the
latent components were compared with correlation-based
identification accuracies. Correlation-based individual
identification from MEG power spectra and FC have
been previously reported by da Silva Castanheira et al.
(2021) and Sareen et al. (2021). In correlation-based iden-
tification, Pearson correlation coefficients are computed
between the power spectra or FC matrices of separate
measurement sessions across all the subjects. Predictions
are based on the highest correlation values between the
measurement sessions. The final identification accuracy

is the number of correct identifications divided by the
number of predictions. In the present work, the reported
correlation-based identification accuracies are averages
across all the resting-state session pairs (i.e., 3-Restin
vs. 4-Restin, 3-Restin vs. 5-Restin, 4-Restin vs. 5-Restin).

In evaluating the BRRR modelling approach, we used
the correlation-based fingerprinting accuracy as a “gold
standard”, with the aim to reach, in the best case, approx-
imately equally good accuracy. Our aim was to determine
whether BRRR can model the previously reported differ-
ences between the different metrics and frequency bands
and what amount of model complexity (i.e., number of
latent components) is required to capture the individual
uniqueness of the metrics.

2.3.3 | Model comparison

Models were compared as follows. As was the case in
computing the accuracy, the inverse of the projection
matrix Γ was used to project all the resting-state sessions
to the latent space. In the latent space, cosine distances
were computed between all the measurement sessions
(three per subject) across all the subjects (N ¼ 89),
resulting in a distance matrix with the size 267�267
(3N�3N). The distance matrix was considered to repre-
sent the structure of the latent space of a given model.
The distance matrices of different models were compared
by computing their correlation with the Mantel test
(Mantel, 1967) (Figure 1d). In the present work, the
Mantel test was used to assess the similarity of the latent
space of the different models. We compared distance
matrices, instead of directly comparing the latent compo-
nents, since rotational variance can make individual
components appear different in different models even
when, as a whole, they span similar (but rotated) latent
space. The use of distance matrices also enables compari-
son of models with different numbers of latent
components.

2.3.4 | Cross-validation

Leave-one-out cross-validation was performed with
models trained with the best-performing metrics to get
an indication of their ability to classify unseen subjects.
Since the results of Leppäaho et al. (2019) showed that
spectral power relates siblings to each other, we assumed
that if the sibling of a given test subject was included in
the training data, the predictive performance of the
model might be inflated for that test subject, as the model
would have already partly seen the test subject by proxy
of their sibling. Therefore, with each training and test
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data split, we also excluded the sibling of the test subject
from the training data.

The inverse of the projection matrix Γ was used to
project all the subjects and resting-state data to the latent
space, but predictions were performed only for the
unseen subject. In the latent space, cosine distances were
computed between the components of the first resting-
state session (3-Restin) of the test subject and the subse-
quent resting-state sessions (4-Restin, 5-Restin) of all the
subjects. If the closest 4-Restin and/or 5-Restin was from
the test subject, classification of that session of the test
subject was considered successful. Thus, the number of
correct classifications for each test subject was either 0, 1
or 2, and accordingly the accuracy of each cross-
validation model was either 0, 0.5 or 1. The reported
cross-validation accuracies for each metric and frequency
band are the average accuracies of these models.

3 | RESULTS

3.1 | Correlation-based fingerprinting

Pearson correlation coefficients were computed between
the power spectra or FC matrices of separate measure-
ment sessions to estimate their similarity. The success of
individual identification based on the correlations
depended on the choice of frequency band and FC met-
ric. With non-leakage-corrected metrics, both within-
subject (self) and between-subject (other) correlations
were higher than with leakage-corrected metrics
(Figure 2a). Despite the high values of between-subject
correlations of the non-leakage-corrected metrics, the
within-subject correlation distributions were quite sepa-
rable from the between-subject correlations, allowing for
high individual identification accuracy between the mea-
surement sessions (Figure 2b).

3.2 | BRRR model-based fingerprinting

The BRRR models were trained with the first resting-
state session (3-Restin), while the two subsequent mea-
surement sessions (4-Restin, 5-Restin) were used as test
sets in computing the accuracy of the model. Results for
models trained with the two other sessions can be found
in the Supplementary material.

3.2.1 | Effect of the number of latent
components

The number of the BRRR latent components had a nota-
ble effect on the success of the model: a major increase in

accuracy was seen between two and six components, and
subsequent increments in the number of components
had a diminishing benefit in increasing the accuracy
(Figure 3a). Beyond six components, the relative dis-
tances between the subjects did not change much with
additional components (see Figure 3b for PLV and
Figures S2–6 for several other metrics). The correlations
between distances in the latent spaces with six and
10 components were r ≥ 0:9 (p<0:001) with most of the
training data. In the following analysis, we use 20 latent
components in all comparisons, as after that point
improvements were minimal.

3.2.2 | Effect of the metric and
frequency band

The different models trained with FC data varied sub-
stantially in their identification accuracy (Figure 4a,
Table 2). Models trained with non-leakage-corrected
phase metrics (Coh, PLV) produced the highest accura-
cies (Coh 96.1% and PLV 95.5% for data at gamma band).
Other FC metrics did not reach > 90% accuracy, but
gamma band of PLM and AEC came close (both 88.2%).
The leakage-corrected FC metrics performed generally
quite poorly, with the exception of PLM. Models trained
with power spectra performed better than the models
trained with leakage-corrected FC metrics (excluding
PLM). With 20 latent components extracted from power
spectra, it was possible to attain individual identification
accuracy of 79.8%. Studying connectivity metrics com-
puted over the whole range of frequencies that were used
for the power spectra (1�90 Hz) we obtained a maxi-
mum classification accuracy of 73.6% for the leakage-
corrected methods (PLM), and a maximum classification
accuracy of 93.8% for the non-leakage corrected methods
(PLV).

The FC metrics that are mathematically related pro-
duced distances in the latent spaces that were highly sim-
ilar: correlations of r>0:9 (p<0:001) were observed, on
the one hand, between the distance matrices of models
trained with non-leakage-corrected phase metrics (Coh,
PLV) and, on the other hand, between models trained
with leakage-corrected phase metrics (wPLI and iCoh;
PLI and iPLV) (Figure 5a). All the correlations between
FC metrics and power spectra were below 0.4 (Figure S7).

The correlations among FC metrics were affected by
the frequency band (Figure 5a). In general, alpha band
produced the highest correlation values between the
leakage-corrected phase metrics. PLM did not generally
correlate strongly with other leakage-corrected phase
metrics, but those correlations were highest in the alpha
band (r¼ 0:52�0:55, p<0:001). Notably, in the gamma
band, PLM diverged from the other leakage-corrected

HAAKANA ET AL. 7
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phase metrics by showing fairly high correlation with the
non-leakage-corrected phase metrics (r¼ 0:66, p<0:001)
and with AEC (r¼ 0:54, p<0:001). AEC also correlated
with Coh and PLV (r¼ 0:77, p<0:001). The correlations
between PLM, AEC and the non-leakage-corrected phase
metrics (Coh, PLV) were much lower in the other fre-
quency bands. AEC also correlated with both of its
leakage-corrected versions, but the correlations were
higher with pairwise orthogonalization (cAECp) (r>0:9,
p<0:001; non-gamma bands).

The models trained with different frequency bands of
non-leakage-corrected phase metrics (Coh, PLV) yielded
very similar distances in the latent spaces (PLV shown in

Figure 5b). With both Coh and PLV, the correlations
among non-alpha frequency bands were r>0:7
(p<0:001). The highest correlations were observed
between theta and delta bands (Coh: r¼ 0:80; PLV:
r¼ 0:81) and between beta and gamma bands (Coh:
r¼ 0:83; PLV: r¼ 0:84). When using leakage-corrected
phase metrics, there was virtually no similarity between
the models of different frequency bands (all correlations
were below 0.1; see wPLI in Figure 5b). PLM was an
exception to this finding, but even the PLM correlations
remained relatively low, the highest value being between
beta and gamma bands (r¼ 0:30, p<0:001). Amplitude
metrics showed a somewhat different pattern: while

F I GURE 2 (a) The combined

distributions of between-session

correlation values of all the subjects.

Red: correlation values between

measurements of the same subject (self).

Blue: correlation values between

measurements of different subjects

(other). (b) Accuracy of correlation-

based identification for different

metrics.

8 HAAKANA ET AL.
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correlations between different frequency bands of AEC
were overall lower than those of PLV and Coh, applying
leakage-correction to AEC increased some correlations
but decreased others (AEC and cAECs shown in
Figure 5b).

3.2.3 | Effect of the measurement session
and source reconstruction

Models trained with 4-Restin and 5-Restin (Figures S8–9)
produced similar accuracies as models trained with
3-Restin (presented above). The distance matrices of the
models trained with 20 latent components and different
measurement sessions were also similar, r ≥ 0:9
(p<0:001), with most of the training data
(Figure S10–14). Notably with the leakage-corrected

phase metrics the similarity depended on the frequency
bands (r>0:9 only in alpha band; Figure S15).

Overall, similar differences among the FC metrics
were observed with sensor-space and source-space data,
but the accuracies of the sensor-space models were lower
than those of the source-space models (Figure S16).
However, power spectra yielded slightly higher
accuracies with sensor-space than source-space data.
The degree to which source reconstruction affected the
distances in the latent space depended on the metric
(Figure S17). Non-leakage-corrected phase metrics (Coh,
PLV) had the least similar distances in the latent spaces
between sensor-space and source-space models (r<0:3
in all frequency bands). In contrast, the amplitude
metrics and PLM yielded very similar distances in the
latent spaces (r>0:8, p<0:001), but this depended on
the frequency band.

F I GURE 3 (a) Identification

accuracies computed for models trained

with different metrics and with different

numbers of latent components K.

(b) Mantel test correlations between

distance matrices of models trained

with PLV and different numbers of

latent components K.

HAAKANA ET AL. 9
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3.2.4 | Cross-validation

Leave-one-out cross-validation was performed on the best
performing FC metrics (PLM, AEC, PLV) and the power
spectra (Figure 4b) using 20 latent components. Coh was
excluded since its results in the previous analyses were
nearly identical to PLV. The cross-validation performance

followed the trend of the models trained with the full
dataset, but the accuracies were expectedly lower. The
highest predictive accuracies of the FC models were
again in the gamma band (PLM 67.4%, AEC 75.8%, PLV
86.5%). PLV was the best performing FC metric, produc-
ing > 80% accuracy in the non-theta frequency bands.
The cross-validation model of power spectra performed

F I GURE 4 (a) Identification accuracies

computed for models trained with different

metrics and frequency bands. (b) Identification

accuracies of leave-one-out cross-validation with

the best metrics. Twenty latent components

were used.

TAB L E 2 Identification accuracies (%) for 20 latent components extracted from different FC metrics in different frequency bands.

FC
metric

Delta
(1–4 Hz)

Theta
(4–8 Hz)

Alpha
(8–13 Hz)

Beta
(13–30 Hz)

Gamma
(30–50 Hz)

Broadband
(1–90 Hz)

cAECs 19.7 12.4 28.7 24.7 12.9 23.6

cAECp 10.7 16.3 30.3 32.0 16.3 34.8

iCoh 23.6 28.7 59.6 37.1 19.7 64.6

iPLV 20.8 18.5 51.1 30.3 14.0 55.6

PLI 20.2 18.0 51.1 29.2 14.6 61.2

wPLI 21.3 27.5 60.1 38.2 18.5 61.2

PLM 38.8 34.3 59.0 81.5 88.2 73.6

AEC 57.3 57.9 51.1 64.0 88.2 68.0

Coh 89.3 89.3 91.6 94.9 95.5 93.3

PLV 88.2 89.9 92.7 93.8 96.1 93.8

10 HAAKANA ET AL.
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almost as well as the model trained with the full dataset,
producing an accuracy of 77.5% in the leave-one-out
cross-validation.

4 | DISCUSSION

Previously, BRRR was successfully used to build a
low-dimensional neurofunctional model for identifying
individuals from sensor-level resting-state MEG power
spectra (Leppäaho et al., 2019). The present work aimed
to determine whether the same general methodological

framework could be applied to model individuality of FC
between brain areas, as well as to evaluate whether the
BRRR model generalizes to unseen individuals. A further
key aim for the potential future use of the modelling of
individual differences was to examine whether the
observed distance patterns among individuals remained
largely unchanged between the well-functioning models,
or whether the different neural metrics would reveal dis-
tinct dis/similarity patterns among individuals.

The performance of BRRR models mostly reflected
the differences that are observed in correlation-based fin-
gerprinting. Namely, the performance of a model

F I GURE 5 (a) Mantel test correlations between distance matrices of models trained with different FC metrics. (b) Mantel test

correlations between distance matrices of models trained with different frequency bands of PLV, PLM, wPLI, AEC and cAECs. Twenty

latent components were used.

HAAKANA ET AL. 11
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depended strongly on the metric and frequency band that
were used: Non-leakage-corrected FC metrics performed
better than leakage-corrected FC metrics, and phase met-
rics performed better than amplitude metrics. The best
performing BRRR models, with just 20 latent compo-
nents, were able to identify individuals between measure-
ment sessions with over 90% accuracy, approaching the
highest correlation-based accuracies. The accuracy was
reduced when classifying the measurement sessions of
unseen subjects, but an accuracy exceeding 80% was still
achieved with some of the models.

Based on our results, BRRR seems to behave well as a
model of individual differences. It is simple, stable, and
generalizable. Firstly, it can produce a low-dimensional
representation of the various metrics, and the resulting
low-dimensional latent components can be used to iden-
tify individuals between measurement sessions. Secondly,
models trained with different measurement sessions pro-
duce very similar latent spaces, which remain quite con-
sistent even when the model complexity is increased by
adding more components. Thirdly, the model is predic-
tive of novel subjects. These results provide a solid foun-
dation for applying BRRR in future investigations of
neurofunctional fingerprints.

4.1 | Individual neural fingerprints can
be represented by just 20 components

As expected, the accuracy of all the models increased
with the number of latent components, but the distances
in the latent spaces were quite stable already with 6 com-
ponents. These observations align with how the latent-
noise BRRR is formulated, that is, the amount of addi-
tional variance explained decreases with each added
component and the number of components needed is rel-
atively low (Gillberg et al., 2016). We chose to use 20 com-
ponents for our analyses, since the improvements gained
with more than 20 components were minimal with most
metrics and we wanted to keep the models as simple as
possible. With certain FC metrics and just 20 components,
it was possible to attain an identification accuracy that
was comparable with the correlation-based accuracy. The
FC matrices that we used in training the BRRR models
(and in the correlation-based identification) contained
6670 unique values, so the reduction to just 20 values
was notable.

Overall, sensor-space and source-space data produced
similar results between the metrics, but the accuracies of
the sensor-space models tended to be slightly lower. Since
the difference between the two types of data were not
very large, both approaches are viable for training BRRR
models, each with its advantages and disadvantages.

Training models with sensor-space data has the obvious
advantage that no anatomical data of the subjects is
needed. In contrast, using source-space data makes it
possible to apply the model across datasets, even when
different MEG devices have been used to collect the data,
as long as the same atlas is used in source reconstruction.

4.2 | Some FC metrics and frequency
bands are more individually distinctive
than others

The performance of a BRRR model depended strongly on
the FC metric and frequency band that was used in train-
ing the model. Mathematically related metrics produced
similar results, both in terms of identification accuracy
and the distances in the latent space. In contrast, differ-
ences were observed between amplitude-based and
phase-based metrics as well as between leakage-corrected
and non-leakage-corrected metrics. Namely, phase
metrics performed better than amplitude metrics, and
non-leakage-corrected FC metrics (AEC, Coh, PLV) per-
formed better than their corresponding leakage-corrected
versions (cAEC, iCoh, iPLV). The non-leakage-corrected
phase metrics (Coh, PLV) had good performance at all
frequency bands, but there was a mild drop in accuracy
when moving towards the lower frequency bands.
They also produced quite similar distances in the
latent spaces in different frequency bands, especially
between neighbouring frequency bands (delta and theta,
beta and gamma). Both the non-leakage-corrected
phase metrics and AEC had their best performance in
gamma band.

Most of the leakage-corrected phase metrics (except
PLM) had their best performance in alpha band, whereas
PLM had its best performance in gamma and beta bands.
There was almost no similarity between the distances in
the latent spaces of non-leakage-corrected phase metrics
(Coh, PLV) and their leakage-corrected counterparts
(iPLV, iCoh). In addition, the distances in the latent
spaces of the leakage-corrected phase metrics were quite
unique in each frequency band, which aligns with the
results of Marzetti et al. (2013), who reported consistent
non-zero phase interactions that were frequency specific.
In contrast, the leakage-corrected versions of AEC did
yield similar distances in the latent spaces as non-
leakage-corrected AEC, although the correlations were
relatively low in the gamma band. Overall, it appears that
zero-lag interactions are important for the distances in
the latent space, but their importance varies between
amplitude and phase metrics and across frequency bands.

PLM behaved differently from the other leakage-
corrected phase metrics (iCoh, iPLV, PLI, wPLI). While

12 HAAKANA ET AL.
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the other leakage-corrected phase metrics yielded very
similar results in terms of their identification accuracy,
PLM had an identification accuracy that was comparable
with the non-leakage-corrected metrics (AEC, Coh, PLV).
The good performance of PLM was not entirely unex-
pected, since Sareen et al. (2021) have reported high
correlation-based fingerprinting success rate for PLM.
The authors of PLM (Baselice et al., 2019) highlight two
factors that differentiate PLM from other leakage-
corrected phase metrics: First, it can measure the
dependency between signals even when the phase
difference between them is not constant over time.
Secondly, it is more resilient to noise. PLM’s exception-
ally good performance, compared with the other
leakage-corrected phase metrics, is likely related to these
two factors.

4.3 | Modelling results agree with
correlation-based results but present also
new phenomena

The differences between the BRRR models reflected the
differences seen in the correlation-based identification:
The same metrics that performed well in correlation-
based identification also yielded BRRR models that per-
formed well. Our correlation-based results were mostly in
agreement with previous reports (Colclough et al., 2016;
Sareen et al., 2021). The distributions of the correlation
values showed that non-leakage-corrected FC metrics
produced connectivity patterns that were highly similar
both within a particular subject and with other subjects,
when compared with leakage-corrected FC metrics. How-
ever, even though the between-subject correlations were
high, the within-subject correlations were even higher, so
there was enough subject-specific uniqueness in the con-
nectivity values to allow for individuals to be differenti-
ated from one another.

There were also some notable differences between the
BRRR models and correlation-based fingerprinting.
Firstly, the accuracy of the BRRR models trained with
leakage-corrected metrics was markedly lower than that
of the corresponding correlation-based accuracies. This
suggests that the individually distinctive connectivity pat-
terns quantified by leakage-corrected metrics are too
complex to be condensed into just 20 latent values. Sec-
ondly, the BRRR modelling resulted in a strong differ-
ence between the higher and lower frequency bands of
AEC and PLM, unlike the correlation-based results. This
would indicate that the individually distinctive connectiv-
ity patterns quantified by these metrics can be captured
by 20 values at high frequencies but are too complex at
lower frequencies to be represented by just 20 values.

4.4 | Individual uniqueness may be
linked to short-range zero-lag interactions

Our results highlight non-leakage-corrected FC metrics
and gamma band in their ability to differentiate between
subjects. Non-leakage-corrected FC metrics are known to
suffer from the effects of field spread even at the source
level, leading to artificial zero-lag interactions (for
review, see e.g., (Bastos & Schoffelen, 2016; O’Neill
et al., 2015)). Non-leakage-corrected phase metrics
appear to be dominated by local connections, which are
absent in leakage-corrected phase metrics, while
leakage-corrected phase metrics can detect long distance
interactions (Sekihara et al., 2011; Stam et al., 2007).
Long-distance connectivity is also more prominent in
leakage-corrected amplitude coupling in comparison
with non-leakage-corrected one (Colclough et al., 2015;
Hipp et al., 2012). The local and long-range amplitude
coupling patterns appear to be also frequency dependent:
long-range interactions are more prominent in lower fre-
quency bands in comparison with gamma band, which is
dominated by local interactions (de Pasquale et al., 2010;
Liu et al., 2010). Together, the previous work and our
present results indicate that local connections are more
informative in differentiating between subjects than long-
range connections or, at least, that local connectivity pat-
terns are more effectively represented by 20 latent values.
To what degree the latent components of the non-
leakage-corrected FC metrics reflect differences in true
connectivity rather than differences in artificial connec-
tions due to field spread remains still unclear. However,
the good accuracy obtained with PLM implies that learn-
ing latent components that are successful in individual
identification is not necessarily dependent on zero-lag
interactions.

4.5 | Limitations and outlook

The previous correlation-based fingerprinting results on
this same HCP MEG data set could be convincingly
reproduced with the present BRRR model-based
approach. Furthermore, the results of the leave-one-out
cross-validation suggest that, with certain FC metrics and
power spectra, BRRR is applicable to unseen subjects.
Nonetheless, to confirm the generalizability of the BRRR
approach, future work will need to train and test the
model across completely different datasets.

We used the distance matrices among the subjects as
a means of quantifying the latent spaces of the different
models. The distances in the latent space remained
relatively similar with the increasing number of BRRR
components, which speaks to the stability of the BRRR
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method. The intersubject distance patterns were also
remarkably similar between mathematically related FC
methods, as well as between gamma-range PLM, AEC,
Coh and PLV that yielded the best identification accura-
cies. However, the intersubject distance patterns differed
notably between the FC metrics and power spectra, both
showing high identification accuracies. It remains to be
explored whether and how these different intersubject
relationships emerging from different neural metrics link
to individual variation of neurofunctional task effects and
behaviour.

Another intriguing question for future studies relates
to the interpretation of the latent components. What are
the neurofunctional factors that they represent? The dif-
ferences between the models trained with leakage-
corrected and non-leakage-corrected FC metrics suggest
that short-range connectivity patterns may be well repre-
sented by a low dimensional model, but the relationship
between the latent components and specific neural acti-
vation patterns requires further studies.

The main limitation of our study relates to the choice
of parcellation scheme, which is likely to affect the BRRR
modelling. Already in the correlation-based identification
results there were minor differences in our results in
comparison with those of Colclough et al. (2016) and
Sareen et al. (2021), who employed different atlases.
Relatedly, different source reconstruction approaches
may also influence the FC data and thus the predictive
performance of BRRR.

5 | CONCLUSION

In this study, we examined resting-state MEG power
spectra and FC metrics in building a stable low-
dimensional model of individual differences. Our results
show that BRRR can be used to differentiate individuals
with over 90% accuracy, with as few as 20 components,
and even predict unseen subjects with over 80% accu-
racy. What remains to be further investigated in the
future is the generalizability of the models: Can
the models trained with the HCP dataset generalize to
other datasets and differentiate individuals who are from
different demographics and whose data have been col-
lected at different MEG sites? Another major question is
the interpretation of the latent components: how are they
related to neurofunctional factors? Influence of other var-
iables, such as the number of subjects included in train-
ing, use of task data and different classification schemes,
also need to be inquired into to gain a more comprehen-
sive understanding of the limits and capabilities of BRRR
modelling. Our present results serve as a solid starting
point for these future explorations.
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