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The classic brain criticality hypothesis postulates that the brain benefits from operating near a continuous second-order phase transi-
tion. Slow feedback regulation of neuronal activity could, however, lead to a discontinuous first-order transition and thereby bistable
activity. Observations of bistability in awake brain activity have nonetheless remained scarce and its functional significance unclear.
Moreover, there is no empirical evidence to support the hypothesis that the human brain could flexibly operate near either a first- or
second-order phase transition despite such a continuum being common in models. Here, using computational modeling, we found
bistable synchronization dynamics to emerge through elevated positive feedback and occur exclusively in a regimen of critical-like dy-
namics. We then assessed bistability in vivo with resting-state MEG in healthy adults (7 females, 11 males) and stereo-electroencepha-
lography in epilepsy patients (28 females, 36 males). This analysis revealed that a large fraction of the neocortices exhibited varying
degrees of bistability in neuronal oscillations from 3 to 200Hz. In line with our modeling results, the neuronal bistability was posi-
tively correlated with classic assessment of brain criticality across narrow-band frequencies. Excessive bistability was predictive of epi-
leptic pathophysiology in the patients, whereas moderate bistability was positively correlated with task performance in the healthy
subjects. These empirical findings thus reveal the human brain as a one-of-a-kind complex system that exhibits critical-like dynamics
in a continuum between continuous and discontinuous phase transitions.
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Significance Statement

In the model, while synchrony per se was controlled by connectivity, increasing positive local feedback led to gradually emerging
bistable synchrony with scale-free dynamics, suggesting a continuum between second- and first-order phase transitions in synchrony
dynamics inside a critical-like regimen. In resting-state MEG and SEEG, bistability of ongoing neuronal oscillations was pervasive
across brain areas and frequency bands and was observed only with concurring critical-like dynamics as the modeling predicted. As
evidence for functional relevance, moderate bistability was positively correlated with executive functioning in the healthy subjects,
and excessive bistability was associated with epileptic pathophysiology. These findings show that critical-like neuronal dynamics in
vivo involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.
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Introduction
The activity of neuronal populations self-organizes into long-
range synchronized oscillations that regulate neuronal commu-
nication (Fries, 2005; Uhlhaas et al., 2009). The Brain Criticality
Hypothesis posits that brains, like numerous other complex sys-
tems, operate near a critical point of a continuous, second-order
transition (Beggs, 2008; Chialvo, 2010) between asynchronous
and fully synchronous phases (Beggs and Timme, 2012; Muñoz,
2018; Palva and Palva, 2018; Wilting and Priesemann, 2019).
This would lead to moderate mean synchronization and emer-
gent power-law spatiotemporal correlations, and yield many
functional benefits, such as maximal dynamic range (Kinouchi
and Copelli, 2006), efficient communication (Shew et al., 2011),
processing (Boedecker et al., 2012), and representational capacity
(Bertschinger and Natschläger, 2004; Shriki and Yellin, 2016).
Conversely, operation far from the phase transition would be
associated with inadequate or excessive synchronization of neu-
ronal activity, both of which are incompatible with healthy brain
functions (Zimmern, 2020) and, for example, representative of
comatose (Liu et al., 2014) and epileptic pathology (Hobbs et al.,
2010), respectively.

The balance between excitation and inhibition has been pro-
posed as a key control parameter for regulating neuronal systems
to operate in the vicinity of this phase transition. As we will illus-
trate with a generative model, slow positive feedback regulation
of neuronal synchrony could, however, lead to a discontinuous
first-order phase transition and thus to the emergence of bistable
dynamics (Wilson and Cowan, 1972; Freyer et al., 2012).
Electrophysiological studies have already established that neuro-
nal populations may show bistability per se For example, during
sleep, slow (0.1-1Hz) oscillations are associated with discrete up-
and down-states (Steriade et al., 1993; Holcman and Tsodyks,
2005); in awake humans, an EEG study has revealed bistability in
alpha band (8-14Hz) oscillation amplitudes (Freyer et al., 2009).
Nevertheless, whether these findings revealed neuronal systems
operating near a first-order phase transition has remained unre-
solved while several converging lines of in vivo evidence support
the notion of critical brain dynamics specifically near a second-
order phase transition (Beggs and Timme, 2012; Palva and Palva,
2018; Wilting and Priesemann, 2019).

In this study, we asked whether awake resting-state human
brain exhibits critical bistable dynamics indicative of neuronal
systems operating near a first- rather than second-order phase
transition. Moreover, as strong bistability is universally predic-
tive of a potential for catastrophic shifts (Thom, 1972; Zeeman,
1976; Agu and Teramachi, 1978; Villa Martín et al., 2015), we
hypothesize that high bistability neuronal synchronization dy-
namics would be indicative of a pathologic regimen where neu-
ronal populations may abruptly switch from asynchronous to
momentarily hypersynchronized, seizure-predisposing states.

We first used generative modeling to establish how varying
degrees of bistable dynamics emerge as a consequence of intro-
ducing slow positive local feedback (Freyer et al., 2012) that is
conceptually equivalent to increasing demands for limited
resources (di Santo et al., 2018). We then analyzed a large body
of source-reconstructed MEG and intracerebral stereo-EEG
(SEEG) recordings of resting-state human brain activity. In both
MEG and SEEG, we found that anatomically and spectrally wide-
spread bistability characterized neuronal oscillations from d (3-
7Hz) to high-g (100-225Hz) frequencies. In SEEG, conversely,
excessive resting-state bistability was colocalized with the epilep-
togenic zone (EZ) and thereby associated with the pathophysiol-
ogy underlying epilepsy. Bistable criticality thus constitutes a

pervasive and functionally significant feature of awake resting-
state brain dynamics.

Materials and Methods
The canonical model for bistability
Freyer et al. (2012) proposed the canonical Hopf bifurcation as a dynam-
ical mechanism for bistability. They also presented evidence for bistabil-
ity in a kinetic model of gene regulation, and suggested the universality
of the canonical model for bistability across a broad range of biological
systems. The canonical Hopf bifurcation is defined as follows:

_r ¼ �r5 1 lr3 1 b r1 h ½ð1� rÞz aðtÞ1 rrz mðtÞ� (1)

where _r is the time derivative of a local neuronal activity r (a real num-
ber); l is the shape parameter and b the bifurcation parameter; h scales
the overall influence of noise; where z a(t) and zm(t) are additive and
state-dependent noise, respectively, and they are two uncorrelated
Wiener processes; the parameter r weights the influence of state-de-
pendent noise. High state-dependent (multiplicative) noise in the model
results in erratic jumps between a low- and a high-amplitude attractor
when driven by Brownian noise. We hypothesized that different combi-
nations of l and b result in either supercritical or subcritical bifurcation
(details in Freyer et al., 2012), which are associated with underlying con-
tinuous or discontinuous (or second- or first-order) phase transition,
respectively (Kim et al., 1997; di Santo et al., 2016; Cocchi et al., 2017).
When r described the amplitude of a two-dimensional system with phase
u , then Equation 1 describes a normal form stochastic Hopf bifurcation.

Experimental design and statistical analysis
Bistability in the Kuramoto model. We studied first- and second-

order phase transitions in a Kuramoto model with a modified noise
term. The Kuramoto model is a generative model that can be used for
studying the collective behaviors of a number of interconnected phase
oscillators because of weak interactions (Breakspear et al., 2010;
Rodrigues et al., 2016). In a Kuramoto model, the dynamics of each os-
cillator i is a scalar phase time series u i (u [ 0:2p ), coupled into a popu-
lation ensemble u as follows:

_u i ¼ v i 1Ki 1Zi (2)

where, for any oscillator i, _u i is the rotation of its phase u i;v i is the natural
frequency of i; Ki ¼ Ki hð Þthe coupling between i and the rest oscillators of
the ensemble, and Zi is a stochastic term. The degree of synchrony of the
ensemble (i.e., order parameter or mean field) is the outcome of tripartite
competition for controlling the collective behaviors of all oscillators: v i and
Zi are desynchronizing factors, whereas Ki is the synchronizing factor.
Here, v i follows a normal distribution. In the classic model, the coupling
termKi is defined as the i-th oscillator adjusts its phase according to interac-
tions with all other oscillators in the system through a pair-wise phase inter-
action function as follows:

Ki ¼ k

N

XN

j¼1

sinðu i � u jÞ (3)

here, k is a scalar number representing coupling strength, N¼ 200 is the
number of oscillators in the ensemble. For simplicity, here we used a
fully coupled network to avoid other families of emerging dynamics
because of nodal or network structural disorders (e.g., Griffiths phase)
(Muñoz et al., 2010; Moretti and Muñoz, 2013). In addition, we found
that with a Gaussian nodal-weight distribution, the model behaved iden-
tically to a fully coupled network. We modified the noise term in line
with the Hopf bifurcation (Eq. 1) as follows:

Zi ¼ h ½ð1� rÞz aðtÞ1 rðRMAX � RÞz mðtÞ� (4)

here, z a(t) and zm(t) are additive and multiplicative noise, respectively,
as described in Equation 1; however, in Equation 4, z a(t) and zm(t) are
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uncorrelated and independent Gaussian phase noise with zero mean and
unit variance; r scales the influence of zm(t); RMAX is the maximal order
dynamically assessed (e.g., slightly ,1 because of the presence of noise)
and R is the current mean field (a scalar) that quantifies the degree of
synchrony of the population at time t as follows:

RðtÞ ¼
����
1
N

XN

n¼1

eu nðtÞ
���� (5)

when viewing R from the complex phase plane, it essentially is the cent-
roid vector of the population phase distribution: if the whole population
is in full synchrony, R¼ RMAX ! 1; when there is no synchrony, R! 0.
The mean central frequency (v ) of the oscillators (Eq. 2) was set to
10Hz here. Indeed, the dynamics of R remain the same for any arbitrary
narrow-band frequency (v . 0), that is, without loss of generality, and
the complex Rmoves on a rotating phase plane with the angular velocity
associated with v .

In our model, the natural frequency of the oscillators has small var-
iance; therefore, the order is correlated with coupling positively and with
noise negatively. The total noise weight is fixed with a constant parame-
ter h , and positive feedback is represented by the state-dependent noise
term. As the model is tuned to operate near criticality by a specific k
value and a large r , the influence of the additive noise term becomes
negligible, whereas the multiplicative noise exerts a strong effect on R
because of the positive feedback from R. For example, when R is in the
“down” mode, the multiplicative noise amplitude becomes large; there-
fore, R tends to remain in the down mode; when R is in the “up” mode,
the multiplicative noise amplitudes are tuned down, thus causing the
model to remain stuck in the up mode. Because the noise here is a
Gaussian process, occasionally a very large amplitude noise sample can
“kick” the model from up to down mode; vice versa, a small amplitude
noise sample can kick the model from down to up mode. This results in
bistability.

MEG resting-state recording and subjects. We recorded 10min rest-
ing-state MEG data from 18 subjects (11 males, 31.76 10.5, mean6 SD,
yeas of age) at the BioMag Laboratory, HUS Medical Imaging Center
(Helsinki, Finland). Subjects were seated in a dimly lit room and instructed
to focus on a cross on the screen in front of them. Recordings were con-
ducted at Meilahti Hospital (Helsinki, Finland). All subjects were screened
for neurologic conditions. The study protocol for MEG and MRI data
obtained at the University of Helsinki was approved by the Coordinating
Ethical Committee of Helsinki University Central Hospital (ID 290/13/03/
2013) and was performed according to the Declaration of Helsinki.

We also assessed working memory, attention, and executive func-
tions in these subjects with a battery of neuropsychological tests. These
included (see Fig. 4, x axis): Zoo Map Time, Toulouse-Pieron test, Digit
Symbol Coding test, Zoo Map Plan, Digit Span forward and backward
(BackDigits and ForwDigits, respectively), Letter-Number Sequencing,
and Trail Making Test parts A and B. Some subjects had missing/invalid
behavioral scores, but for each score, at least 16 valid scores were avail-
able for estimating neuro-behavioral correlations.

SEEG resting-state recording and subjects. We acquired 10min of
uninterrupted, seizure-free resting-state brain activity with eyes closed
from 64 drug-resistant focal epilepsy patients (28 females, mean 6 SD
age, 30.16 9.1 years; see Table 1) undergoing presurgical assessments.
The subjects gave written informed consent for participation in research
studies. The study protocol for SEEG, CT, and MRI data obtained in the
La Niguarda Hospital were approved by the ethical committee of the
Niguarda “Ca Granda” Hospital, Milan (ID 939), Italy, and was per-
formed according to the Declaration of Helsinki.

Before surgery, medical doctors identified epileptogenic and seizure
propagation zone by visual analysis of the SEEG traces (Cossu et al.,
2005; Cardinale et al., 2013). Epileptogenic areas (generators) are the
ROI that are necessary and sufficient for the origin and early organiza-
tion of the epileptic activities (Luders et al., 1993). SEEG contacts
recorded from such generators often show low-voltage fast discharge
or spike and wave events at seizure onset. Seizure propagation areas
(receivers) are recruited during seizure propagation, but they do not

initialize seizures (Bartolomei et al., 2013; Jirsa et al., 2017). Contacts
recorded from receivers show delayed, rhythmic modifications after sei-
zure initiation in the generators. It is common to see regions demon-
strating both generator and receiver dynamics; thus, they were identified
as generator-receiver. In this study, we refer to generator, receiver, and
generator-receiver collectively as EZ to distinguish them from those that
were tentatively identified as healthy non-EZ regions (nEZ).

SEEG cortical sampling statistics. Preprocessing of the SEEG data
yielded 7019 SEEG contacts in various cortical and subcortical gray mat-
ter locations. For investigating the LRTCs and bistability of cortical dy-
namics that were tentatively considered as normal, contacts recorded
from subcortical structures and EZs were excluded. Contacts with
.2.5% samples identified as “spiky” were also excluded. Thereby,;3 of
7 available contacts were excluded. From the resulting 4142 contacts, a
small fraction of the contacts cannot be reliably assigned to a parcel by
the segmentation software (Arnulfo et al., 2015b), these therefore were
also excluded. This resulted in 4122 contacts (66.86 24.5 per patient,
range: 4-123) for analyses. Although the cortical sampling was heteroge-
neous across patients, with 4124 cortical nEZ contacts, we were able to
cover 90 of the 100 Schaefer parcels with each parcel sampled by at least
3 subjects and at least 10 contacts.

Constructing surrogate data for statistical tests. To determine the
chance level observations of detrend fluctuation analysis (DFA) and bist-
ability index (BiS) in null hypothesis data (see Fig. 2D,E) (i.e., without
embedded nonlinear critical-like structures) but with the same power
spectrum as the real physiological signals (Lancaster et al., 2018), phase
randomized Fourier transform surrogates of the broad-band time series
were constructed for all MEG parcels and SEEG contacts (NMEG ¼ 6800
and NSEEG ¼ 4142). The surrogate broad-band data were filtered into
narrow-band data, and their DFA and BiS estimates were subsequently
computed. Real values were then compared against the distribution of
the surrogate data for each frequency, and those samples with estimates
.95th percentile of the surrogate data were considered as significant
(see Fig. 2).

To examine whether any Yeo systems showed different BiS and DFA
estimates from the null hypothesis (H0) that all the estimates were ran-
domly distributed across the brain regions (see Fig. 3C–E), we con-
structed 105 label-shuffled surrogates to derive the 95th percentile of the
H0 CIs for each of the MEG and SEEG band-collapsed u -a and g -band
DFA and BiS brain maps.

MEG data acquisition
A 306-channel MEG system (204 planar gradiometers and 102 magneto-
meters) with a Vectorview-Triux (Elekta-Neuromag) was used to record
10min eyes-open resting-state brain activity from 18 healthy adult sub-
jects at the BioMag Laboratory (HUSMedical Imaging Center). For cort-
ical surface reconstruction, T1-weighted anatomic MRI scans were
obtained at a resolution of 1 � 1 � 1 mm with a 1.5 T MRI scanner
(Siemens). This study was approved by the ethical committee of Helsinki
University Central Hospital and was performed according to the
Declaration of Helsinki. Written informed consent was obtained from
each subject before the experiment.

MEG data preprocessing and filtering
The Maxfilter software with temporal signal space separation (Elekta
Neuromag) was used to suppress extracranial noise in sensors and to
interpolate bad channels (Taulu and Simola, 2006). Independent compo-
nent analysis (MATLAB Fieldtrip toolbox, http://fieldtrip.fcdonders.nl)
was next used to identify and remove components that were correlated
with ocular (identified using the EOG signal), heartbeat (identified using
the magnetometer signal as a reference), or muscle artifacts (Oostenveld
et al., 2011). The FreeSurfer software (http://surfer.nmr.mgh.harvard.
edu/) was used for subject MEG sources reconstruction, volumetric seg-
mentation of MRI data, surface reconstruction, flattening, cortical par-
cellation, and neuroanatomical labeling with the Schaefer-2018 atlas
(Schaefer et al., 2018) in which each cortical parcel is assigned to a func-
tional system (Yeo et al., 2011), which informed later systems-level anal-
ysis. We here used resolutions of 400 and 100 parcels.
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Table 1. Demographic data for the SEEG patient cohorta

ID EZ location Age (yr) Sex Medication Outcome (Engel score)

1 Right mesial frontal 21 M Carbamazepine 600 mg, Levetiracetam 1500 mg IB (8 yr)
2 Right temporal insular 26 M Carbamazepine 1200 mg, Primidone 750 mg, Clonazepam 10 mg IA (37 mo)
3 Right temporal 38 M Carbamazepine 1200 mg, Dilantin 450 mg, Lacosamide 300 mg, Clonazepam 10 mg No surgery
4 Left temporo-parietal 38 F Phenobarbital 100 mg, Topiramate 100 mg, Levetiracetam 3000 mg IA (25 mo)
5 Left temporal-insular 24 M Oxcarbazepine 600 mg, Lacosamide 400 mg IA (15 mo)
6 Right temporo-insular 40 F Levetiracetam 1000 mg, Lacosamide 350 mg, Sertraline 50 mg, Lorazepam 1 mg IIIA (32 mo)
7 Precuneus 19 M Oxcarbazepine 600 mg, Lacosamide 400 mg No surgery
8 Functional epilepsy 20 F Carbamazepine 1200 mg, Levetiracetam 1500 mg No surgery
9 Right occipito-temporo-parietal 20 M Lamotrigine 400 mg, Levetiracetam 3000 mg, Lacosamide 400 mg IA (3 yr)
10 Left temporal 35 M Topiramate 200 mg, Carbamazepine 900 mg IA (12 mo)
11 Right temporal anterior 28 M Carbamazepine 1200 mg IIA (66 mo)
12 Temporo-hip 36 F Carbamazepine 1400 mg, Levetiracetam 3000 mg IIA (6 mo)
13 Left frontal anterior 40 M Levetiracetam 2750 mg, Carbamazepine 800 mg, Primidone 750 mg IA (12 mo)
14 Thermo-coagulation multiple sites 39 M Oxcarbazepine 1800 mg, Clobazam 20 mg IA (36 mo)
15 Right fronto-temporo-insular 24 F Carbamazepine 1000 mg, Clobazam 20 mg, Lamotrigine 200 mg IVA (24 mo)
16 Left parieto-opercolo-insular 31 F Carbamazepine 1200 mg, Clobazam 40 mg, Phenobarbital 75 mg IVA (12 mo)
17 Right temporo-perisylvian 34 F Phenobarbital 150 mg, Lacosamide 400 mg, Clobazam 10 mg IIC (38 mo)
18 Right perisylvian-insular 17 M Carbamazepine 800 mg, Lamotrigine 400 mg IVA (26 mo)
19 Right temporo-parieto-occipital 36 M Oxcarbazepine 1200 mg, Phenobarbital 150 mg, Valproate 1000 mg IA (35 mo)
20 — 32 F Carbamazepine 700 mg No surgery
21 Left temporal antero-mesial 32 M Carbamazepine 1200 mg, Levetiracetam 750 mg IA (61 mo)
22 Right fronto-centro-insular 33 M Carbamazepine 800 mg, Lacosamide 800 mg, Zonisamide 250 mg IIA (38 mo)
23 Left temporal 21 F Levetiracetam 1750 mg, Lacosamide 400 mg, Valproate1000 mg IA (24 mo)
24 Right parietal 23 M Levetiracetam 3000 mg, CBZ 1000 mg, Lacosamide 500 mg IA (24 mo)
25 Thermo-coagulation 46 M Carbamazepine 1200 mg, Phenobarbital 100 mg IA (24 mo)
26 Right frontal 20 F Valproate 800 mg, Clobazam 10 mg IIA (36 mo)
27 Right fronto-mesial 21 M Carbamazepine 800 mg, Levetiracetam 3000 mg, Nitrazepam 1.5 mg IIIA (13 mo)
28 Right fronto-central 22 M Lamotrigine 400 mg, Levetiracetam 2000 mg IA (24 mo)
29 Right frontal 20 M Carbamazepine 600 mg, Rufinamide 1500 mg IVA (13 mo)
30 Right frontal 44 F Carbamazepine 1200 mg, Zonisamide 400 mg, Phenobarbital 1000 mg IC (24 mo)
31 — 17 M Carbamazepine 300 mg No surgery
32 — 14 M Levetiracetam 1500 mg, Clobazam 5 mg No surgery
33 Right temporal antero-mesial 30 F Oxcarbazepine 2000 mg, Phenobarbital 150 mg IIA (36 mo)
34 — 24 M Carbamazepine 16000 mg, Levetiracetam 4000 mg No surgery
35 — 29 F Levetiracetam 3000 mg No surgery
36 Right orbito-temporal 29 F Zonisamide 400 mg, Levetiracetam 750 mg, Carbamazepine 1400 mg IA (62 mo)
37 — 45 F Lacosamide 500 mg, Valproate 1000 mg, Zonisamide 200 mg No surgery
38 Thermo-coagulation multiple sites 34 F Carbamazepine 1000 mg, Levetiracetam 2500 mg IA (12 mo)
39 Thermo-coagulation multiple sites 50 M Levetiracetam 2000 mg, Lacosamide 600 mg IIA (6 mo)
40 Left occipital 17 F Carbamazepine 1200 mg, Levetiracetam 1500 mg, Lacosamide 300 mg IB (49 mo)
41 Right temporal 44 F Topiramate 300 mg, Oxcarbazepine 1200 mg IIA (50 mo)
42 — 27 M Carbamazepine 800 mg, Lamotrigine 200 mg No surgery
43 — 46 M Carbamazepine 1200 mg, Levetiracetam 3000 mg, Lacosamide 150 mg, Clobazam 20 mg No surgery
44 Right antero-frontal 28 M Carbamazepine 1000 mg, Levetiracetam 1000 mg IIIA (61 mo)
45 Thermo-coagulation right temporo-parieto-perisylvian 27 F Topiramate 200 mg, Lamotrigine 200 mg IA (5 yr)
46 Right temporal antero-mesial 42 F Lacosamide 500 mg IB (36 mo)
47 Left parieto-temporal 15 M Carbamazepine 900 mg IA (6 mo)
48 Thermo-coagulation

right temporo-opercular
37 M Carbamazepine 900 mg, Levetiracetam 3000 mg IVA (12 mo)

49 Left frontal 30 F Carbamazepine 1200 mg, Lamotrigine 200 mg, Clobazam 20 mg IA (5 yr)
50 Left frontal 15 F Levetiracetam 1250 mg, Oxcarbazepine 1200 mg IA (4 yr)
51 Thermo-coagulation 41 M Levetiracetam 3000 mg, Lacosamide 400 mg IA (2 yr)
52 Right temporo-occipital 37 M Lamotrigine 600 mg, Levetiracetam 2000 mg IA (2 yr)
53 Right temporal 29 M Carbamazepine 1400 mg, Levetiracetam 3000 mg, Clobazam 10 mg IA (31 mo)
54 Left opercolo-insular 10 F Carbamazepine 800 mg IIIA (34 mo)
55 Right temporo-frontal 40 F Lamotrigine 600 mg, Clobazam 20 mg, Phenytoin 500 mg IA (13 mo)
56 Left temporo-insular-operculum 29 F Carbamazepine 1800 mg, Clobazam 20 mg IA (24 mo)
57 Right temporal 27 M Lamotrigine 400 mg, Topiramate 400 mg IA (24 mo)
58 — 26 M Phenytoin 400 mg, Topiramate 500 mg No surgery
59 Left temporal 17 M Oxcarbazepine 1500 mg, Clobazam 20 mg, Levetiracetam 2500 mg IA (36 mo)
60 Right temporo-mesial 25 F Topiramate 75 mg, Carbamazepine 1500 mg IA (12 mo)
61 Nodular heterotopia 24 F Carbamazepine 1000 mg, Levetiracetam 500 mg, Clobazam 20 mg IVA (12 mo)

(Table continues.)
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The MNE software package was used to create head conductiv-
ity models and cortically constrained source models with 5000-
7500 sources per subject and for the MEG-MRI coregistration
and for the preparation of the forward and inverse operators
(Hamalainen and Sarvas, 1989; Hämäläinen and Ilmoniemi,
1994). For each MEG subject, data were source-reconstructed and
collapsed to 400 parcels using a reconstruction-accuracy optimiz-
ing source-vertex-to-parcel collapsing method (Korhonen et al.,
2014). The broadband time series of these parcels were then fil-
tered into narrow-band time series using a bank of 20 Morlet fil-
ters with m¼ 5 and log-linearly spaced center frequencies ranging
from 2 to 225 Hz. For group-level analyses, subject DFA and BiS
estimates were morphed from 400 to 100 parcels.

SEEG data acquisition
Resting-state brain activity from 64 drug-resistant focal epilepsy patients
(28 females, 30.16 9.1 years, mean 6 SD; see Table 1) was acquired as
monopolar local field potentials (LFPs) from brain tissue with platinum-
iridium, multilead electrodes using a 192-channel SEEG amplifier system
(Nihon-Kohden Neurofax-110) at 1 kHz sampling rate. Each penetrating
electrode shaft has 8-15 contacts, and the contacts were 2 mm long, 0.8
mm thick, and had an intercontact border-to-border distance of 1.5 mm
(Dixi medical). The anatomic positions and amounts of electrodes varied
according to surgical requirements (Cardinale et al., 2013). On average,
each subject had 176 3 (mean 6 SD) shafts (range 9-23) with a total of
1536 20 electrode contacts (range 122-184, left hemisphere: 666 54,
right hemisphere: 476 55 contacts, gray-matter contacts: 1106 25). The
subjects gave written informed consent for participation in research
studies and for publication of their data. This study was approved by the
ethical committee (ID 939) of the Niguarda “Ca’ Granda” Hospital,
Milan, and was performed according to the Declaration of Helsinki.

SEEG preprocessing and filtering
Cortical parcels were extracted from presurgically scanned T1 MRI 3D-
FFE (used for surgical planning) using the Freesurfer package (Fischl et
al., 2002). A novel nearest-white-matter referencing scheme (its merits
discussed in Arnulfo et al., 2015a) was used for referencing the monopolar
SEEG LFP signals. An automated SEEG-electrode localization method was
next used to assign each SEEG contact to a cortical parcel of Schaefer 100-
parcel atlas with submillimeter accuracy (Arnulfo et al., 2015b). The SEEG
electrodes were implanted to probe the suspected EZs while inevitably pass-
ing through healthy cortical structures. Contacts located at EZ are known to
pick up frequent interictal spikes and would bias DFA estimates (Monto et
al., 2007). Therefore, EZ contacts and contacts recorded from subcortical
regions, such as thalamus, hippocampus, and basal ganglia were excluded
from analysis.

Nevertheless, interictal events (IIEs), such as spikes, can be occasion-
ally observed at nEZ locations in some subjects during rests. These IIE
are characterized by high-amplitude fast temporal dynamics as well as
by widespread spatial diffusion, which need to be excluded to avoid bias
to DFA and BiS estimates. We followed approach used in to identify
such IIEs. Briefly, each SEEG contact broad-band signal was partitioned
into nonoverlapping windows of 500ms in length; a window was tagged
as “spiky” and discarded from LRTCs and bistability analyses when at
least three consecutive samples exceeding 7 times the SD above the chan-
nel mean amplitude. Last, narrow-band frequency amplitude time series
was obtained by convoluting the broad-band SEEG contact time series
with Morlet wavelets that were identical to that of MEG data.

Estimating LRTCs using DFA
LRTCs in 1D time series can be assessed with several metrics (Eke et al.,
2000); and in this study, linear DFA was used to assess specifically how
fast the overall root mean square (RMS) of local fluctuations grows with
increasing sampling period (Linkenkaer-Hansen et al., 2001). An esti-
mated DFA exponent reflects the finite-size power-law scaling in nar-
row-band amplitude fluctuations based on the assumption that the
gradual evolution of a mono-fractal process time series would result in a
normal distribution where the fluctuation can be captured by the sec-
ond-order statistical moments, such as variance. The computation of
DFA can be described briefly as follows (for rationales and technical
details of the algorithm, see Hardstone et al., 2012):

1. The signal profile (X) of a signal was computed by computing the
cumulative sum of a demeaned narrow-band amplitude of a MEG
parcel or SEEG contact time series.

2. A vector of window widths (T) was defined in which the widths
were linearly spaced on log10 scale between 10 and 90 s. The same
scaling range was used across frequencies and for both MEG and
SEEG (i.e., identical vector of T). The lower boundary of 10 s was set
to safely avoid high nonstationarity and the filter artifacts (i.e., 20
cycles of the slowest rhythm of 2 Hz); the upper bound of 90 s was
15% of total sample of the resting-state recording.

3. For each window width t[T, X was partitioned into an array of tem-
poral windows, in which each window was of length t, with 25%
overlap between windowsW(t).

4. For each window w[W(t), a detrended signal wdetrend was obtained by
removing the linear trend (i.e., subtracting the least-square fit of the
samples from the samples ofw, and then taking the RMS ofwdetrend).

5. Finally, F(t), the detrended fluctuation of window size t, was
obtained by computing the mean of RMS (wdetrend).

6. By repeating Step 3 for all window lengths of T defined in Step 2, F,
a vector of F(t), t[T, was obtained. The DFA exponent is the slope of
the trend line of F as a function of T on log-log scale (see Fig. 1I).

Different value ranges of the DFA exponent are commonly thought
to indicate different temporal dynamics in a 1-dimensional time series
(Hardstone et al., 2012). A DFA exponent of 0.5 indicates that the time
series is indistinguishable from a random walk without memory; an
exponent between 0.5 and 1 indicates that the time series has a memory
with positive correlations; an exponent between 0 and 0.5 indicates that
the time series has a memory with negative (anti-) correlations; and an
exponent between 1 and 2 indicates a nonstationary time series. When
obtaining the signal profile in Step 1, the narrow-band oscillation ampli-
tudes are treated as the “rate of change.” Hence, the scaling relationship
between a temporal window size t (in seconds) and the detrended fluctu-
ation F(t) indicates how large the fluctuations in the “work” of a neuro-
nal oscillation could demonstrate over time. A sublinear DFA exponent
(i.e., 0.5,DFA, 1) can be interpreted as the neuronal oscillations
showing a tendency to conserve energy. For example, a DFA exponent
of 0.75 means that, as the window size wi doubles, the RMS in signal pro-
file is expected to increase by 68.2%. On the other hand, a superlinear
exponent indicates the growth of fluctuations is unbounded. For exam-
ple, a DFA exponent of 1.2 means that as the window size doubles, the
RMS is expected to increase by 115%.

Estimating BiS
The BiS of a power time series (R2) is derived from model comparison
between a bimodal or unimodal fit of its probability distribution

Table 1 Continued

ID EZ location Age (yr) Sex Medication Outcome (Engel score)

62 Left temporo-perisylvian 37 F Carbamazepine 1200 mg, Lamotrigine 550 mg IIIA (12 mo)
63 Left temporal antero-mesial 32 F Clobazam 20 mg, Phenobarbital 45 mg IIA (55 mo)
64 Right temporo-occipital 44 M Carbamazepine 800 mg, Levetiracetam 3000 mg, Phenobarbital 125 mg IA (24 mo)
aEZ location indicates the supposed brain location of the EZ. Thermo-coagulation indicates the practice used in surgical intervention of drug-resistant focal epilepsy where current is injected in a bipolar derivation in order to
increase the pericontact temperature. —, no single focal location was identified. Age indicates the age of the patients at the recording date. Drugs are reported with their active principal names. Drug dosage is expressed in
milligrams and refers to the morning dosage measured at the day of the recording. Outcome is expressed as Engel scores. Numbers in parentheses indicate the point time after surgery when the visit occurred.
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Figure 1. Bistability is caused by elevated positive local feedback. A, The order parameter R(t) increases (top) as phases (Ph.) of the oscillators in the model become increasingly synchronized
(bottom). Re/Im, Real/imaginary part of the complex R. B, Exemplary segments of order R time series when the model is in the sub-, super-, critical, and bistable phases indicated in F. C–E,
Criticality estimates as a function of the local positive feedback (r ) and neuronal coupling (k ). C, The mean order. Two arrows indicate the amount of coupling required for the model to tran-
sition from asynchrony (R = 0.1) to hypersynchrony (R = 0.9). D, The DFA exponent as a measure of LRTCs in the fluctuations of R(t). E, The BiS assessed from the R2 time series. C–E, Each
pixel is the mean of 50 simulations. F, An overlaid regimen map based on observation from C–E; classic criticality (with a second-order phase transition) is associated with small positive feed-
back r (black dashed); bistable criticality is seen at mid-to-high degree of r (enclave inside red line). G, Probability distribution of R in bistable (top) and classic (bottom) criticality. The peak
DFA (black line) coincided with the phase transition (i.e., moderate R). H, Probability density (pdf) of R and (I) the detrended fluctuations (DF) and the DFA exponents (the slope) of the time se-
ries from B, color-coded.
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function (pdf); a large BiS means that the observed pdf is better described
as bimodal, and when BiS ! 0 the pdf is better described as unimodal.
We followed the approach used previously (Freyer et al., 2012; Roberts
et al., 2015) to compute BiS. First, to find the pdf of power time series R2,
the empirical R2 was partitioned into 200 equal-distance bins and the
number of observations in each bin was tallied. Next, maximum likeli-
hood estimate was used to fit a single-exponential function (i.e., the
square of a Gaussian process follows an exponential pdf) as follows:

PxðxÞ ¼ ge�x (6)

and a bi-exponential function:

PxðxÞ ¼ dg 1e
�g 1x � ð1� d Þg 2e

�g2x (7)

where g 1 and g 2 are two exponents and d is the weighting factor.
Next, the Bayesian information criterion (BIC) was computed for the

single- and bi-exponential fitting as follows:

BIC ¼ lnðnÞk – 2lnðL̂Þ (8)

where n is the number of samples, L̂ is the likelihood function, and k is
the number of parameters: k¼ 1 for single-exponential BICExp and k¼ 3
for bi-exponential model BICbiE. Thus, BIC imposes a penalty to model
complexity of the bi-exponential model (Wit et al., 2012) because it has
2 more degrees of freedom (second exponents and the weight d ) than
the single exponential model.

Last, the BiS estimate is computed as the log10 transform of differ-
ence between the two BIC estimates as follows:

dBIC ¼ BICExp � BICbiE

BiS ¼ log10ðdBICÞ; if dBIC. 0;
BiS ¼ 0; if dBIC � 0

(9)

Thus, a better model yields a small BIC value, and BiS will be large if the
bi-exponential model is a more likely model for the observed power time
series.

Morphing MEG and SEEG data into a standard atlas
The MEG and SEEG group-level analyses were conducted in a 100-par-
cel standardized Schaefer atlas (Schaefer et al., 2018). Although the
SEEG electrode locations were variable across subjects, we have previ-
ously confirmed with random cohort-split analyses that only using half
of these subjects could readily produce the same group level observations
(Arnulfo et al., 2020). When morphing narrow-band DFA and BiS esti-
mates of individual SEEG contacts into the Schafer atlas, the resulting
group-level parcel estimates were heterogeneous in terms of sampling.
For example, one parcel may contain observations from a varying num-
ber of electrodes and/or subjects. Hence, the group-level estimate of each
parcel was the median of all observations, and the estimate for each of
the seven Yeo subsystems was the median of its constituent parcels.
Furthermore, 10 parcels sampled by �3 subjects and 10 contacts were
excluded from group-level analysis. The group mean parcel metrics were
identical to that of raw data (see Fig. 2D,E, overlay curves).

Supervised classification for EZs
The group-level frequency clustering analysis revealed that much of the
narrow-band data were topologically correlated (see Fig. 3). Hence, for
the classification task, 20 narrow-band metrics were also collapsed into
four frequency clusters as d , u�a, b , and g band (see Fig. 5A). As sub-
jects varied greatly in their DFA and BiS estimates, band-collapsed data
were normalized within subjects as [X-median(X))./max(X-median(X)],
and thereby the differences between EZ and nEZ within subjects
remained. The effect size of differences between band-collapsed and nor-
malized DFA and BiS estimates were assessed with Cohen’s d and com-
pared with the 99th percentile of Cohen’s d observed from 1000 EZ-nEZ
label-shuffled surrogate data (see Fig. 5C).

The feature importance of these neuronal estimates was assessed
with the SHapley Additive exPlanations (SHAP) values (Lundberg et al.,
2017). In addition to the neuronal scores, the contact location in Yeo
systems was also included as an additional feature (see Fig. 4D). The
SHAP values is a generic metric to explain any tree-based model by
explicating the local and global interpretability of features, which advan-
ces the transparency that conventional classification approaches lack.
For solving the EZ-classification problem, the nonparametric random-
forest method (Hastie et al., 2009) was used. The random-forest algo-
rithm is a machine learning method that uses bootstrapped training
dataset and combines the simplicity of decision trees with extended flexi-
bility to handle new data.

Data availability
The data to support the main results can be downloaded from https://
figshare.com/ndownloader/files/41233434, which includes the following:
extended discussions on the theory for bistability and criticality, relevant
generative models, candidate mechanisms for resource loading and
state-dependent noise; the description of the MEG and SEEG analyses
pipeline; SEEG sampling statistics; additional traces showing bistable
critical dynamics with exemplary bistability and DFA fitting; interim
results to support the MEG and SEEG band-clustering by narrow-band
topological similarity; interim results to support the correlations between
LRTCs and bistability on group-level and within Yeo functional systems;
anatomic specificity of the u�a and g band DFA and BiS estimates and
corresponding statistical tests (see Fig. 3); statistical information to sup-
port the MEG behavioral correlations of DFA and BiS estimates (see Fig.
4); and technical details and interim results to support the supervised
and unsupervised EZ classification (see Fig. 5).

Raw data and patient details cannot be shared because of Italian gov-
erning laws and Ethical Committee restrictions. Intermediate data, final
processed data, and all code that support the findings of this study are
available from the corresponding authors on reasonable request.

Results
Positive local feedback is a control parameter for bistable
criticality in silico
To assess the emergence of bistability in synchronization dynam-
ics and its relationship with criticality, we built a variant of the
classic Kuramoto model that is a universal generative model of
synchronization dynamics (see Materials and Methods). The clas-
sic Kuramoto model has a single control parameter, k , that defines
the coupling strength between neuronal oscillators (Breakspear et
al., 2010). Synchrony among the oscillators is quantified by the
“order” parameter R (Eq. 5; Fig. 1A), and a gradual increase of k
leads to different level of order and associated critical dynamics
(Fig. 1B, top).

To study how bistability emerges in the dynamics of order,
we introduced a second parameter r to scale local positive feed-
back. Such feedback is a generic mechanism for bistability, and
here it was implemented as state-dependent noise (Eqs. 2-4) that
is conceptually equivalent to state dependency in canonical mod-
els (Izhikevich, 2007; Freyer et al., 2012; Breakspear, 2017),
resource-loading mechanisms in conceptual models (di Santo et
al., 2016; Buendía et al., 2020), and various synaptic strengths in
firing rate models (Wilson and Cowan, 1972).

When the model is controlled by weak feedback (i.e., small val-
ues of r ), the model behaved identically to the classic critical-like
ensemble with a second-order phase transition where order monot-
onically increased as k increased (Fig. 1C). At moderate order (i.e.,
at the phase transition between low and high order), power-law
long-range temporal correlations (LRTCs) emerged and delineated
a critical region (Fig. 1D). Here, LRTCs were assessed using the
detrended fluctuation analysis exponent (DFA), and DFA. 0.6
demarcates the critical region.
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With strengthening feedback, the order parameter became
progressively bistable (Fig. 1B, bottom) as evidenced by increas-
ing values of the BiS (Fig. 1E), an index of the relative fit of a bi-
modal versus a unimodal pdf to the order power time series (R2).
The bistable dynamics were seen exclusively within the critical

region (Fig. 1F). High bistability (Fig. 1B,F,G, red triangles) was
characterized by (1) a sudden increase in the order in response
to a relative small increase in coupling compared with classic
criticality (Fig. 1C, arrows); (2) a sharp DFA peak indicating a
narrowing of the critical region (Fig. 1G); (3) a clear bimodal

Figure 2. Bistability and LRTCs were robust, large-scale phenomena in the resting-state brain. A, B, Five minutes of broad-band and narrow-band power (R2) time series from (A) a MEG par-
cel in visual area (Vis) in 1 subject and (B) an SEEG contact in middle frontal gyrus in one patient. Insets, Bistability as narrow-band traces switching between “up” and “down” states. C,
Group-level probability (z axis) distribution of narrow-band (y axis) mean amplitude (R). D, DFA exponents. E, BiS estimates. Data were pooled over all nEZ SEEG contacts or MEG parcels; subject
and contact/parcel number indicated in C. Black lines indicate mean of real data. Red dashed lines indicate 99th percentile of surrogate observation. F–H, Examples of narrow-band DFA and
BiS probability distribution as indicated by colored arrows in D, E.
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distribution of order (Fig. 1H); and (4) abnormal super-linear
LRTCs (DFA. 1, Fig. 1I), indicating unbounded growth of os-
cillation amplitudes (see Materials and Methods). These in silico
findings thus showed that synchronization of oscillators may ex-
hibit a continuum between classic second-order critical and
bistable first-order critical dynamics when under the influence of
positive local feedback.

Bistable criticality characterized brain dynamics in vivo
We next assessed neuronal bistability and critical dynamics
in 10 min human resting-state brain activity in SEEG
(N¼ 64) and source-reconstructed MEG (N¼ 18). For SEEG
data, we first restricted analysis to neocortical gray matter
contacts outside of the EZ (Figs. 2-4). Although the anatomic
sampling with SEEG is heterogeneous across patients, the
present cohort size yielded essentially a full coverage of the
cerebral cortex. We estimated LRTCs using DFA and bist-
ability with BiS for narrow-band (Morlet) SEEG and MEG
source amplitude time series that predominantly reflect local
cortical synchronization dynamics.

Bistability was anatomically widespread and spectrally
prevalent
Visual inspection of the narrow-band MEG and SEEG amplitude
time series revealed abundant examples of bistability as intermit-
tent switching between low- and high-amplitude oscillations
(Fig. 2A,B). Comparison with surrogate data showed that both
MEG source signals and SEEG electrode contact LFP signals
exhibited significant (.95th percentile CI of the surrogate data)
bistability and LRTCs across broad frequencies (Fig. 2C–E).
MEG showed peak DFA and BiS estimates in the a (11Hz) fre-
quency band, whereas in SEEG, the BiS peak extended over d (2-
4Hz), u (4-7.6Hz), and a (10-13Hz) bands (Fig. 2F–H). Across
frequencies, the narrow-band DFA and BiS estimates in SEEG
were overall greater than in MEG (Fig. 2E–G).

Neuroanatomical structures of bistability and LRTCs were
correlated
We next studied the neuroanatomical structure of bistability and
inspected its anatomic relationship with LRTCs across frequen-
cies. We first collapsed narrow-band BiS and DFA estimates for

Figure 3. Bistability and LRTCs were coexisting, correlated phenomena in resting-state MEG and SEEG. Neuroanatomical similarity (Spearman’s correlation) between
group-average narrow-band BiS and DFA estimates of (A) MEG and (B) SEEG in Schaefer 100-parcel atlas. Red boxes represent frequency clusters showing high similarity. C,
Narrow-band group-averaged estimates were collapsed into u�a (5.4–11 Hz) and g (40–225 Hz) band based on similarity shown in A. White-out columns in SEEG data
represent excluded parcels because of insufficient sampling. D, E, Parcel-wise group-average u�a band BiS maps for (D) MEG and (E) SEEG. F, Kruskal–Wallis one-way
ANOVA for group-level differences in DFA and BiS estimates between Yeo systems. Dashed line indicates –log10(p value). 1.3 (i.e., p, 0.05). Correlations between group-
average parcel BiS and DFA estimates in u�a (cross) and g band (circles) in (G) MEG and (H) SEEG, �log10(p). 5 (FDR-corrected). I, Spearman’s correlations between
within-subject-average BiS and DFA estimates in Yeo systems (subject NMEG per system ¼18; NSEEG per system¼ 506 9.4, range: 36–60, variable SEEG subject N per system
because of heterogamous spatial sampling).
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MEG parcels (400) and SEEG contacts into a standard atlas of
100 cortical parcels. Next, the neuroanatomical similarity within
bistability and LRTCs and between them were assessed by com-
puting Spearman’s correlations between narrow-band parcel BiS
and DFA estimates.

Both MEG and SEEG showed high anatomic similarity between
neighboring frequencies (Fig. 3A,B). Correlations between slow
and fast rhythms were negative in MEG and weak in SEEG. This
indicated that regions tended to show bistability and criticality in a
cluster of high or low frequencies, but not both. Based on the
neuroanatomical similarities (Fig. 3A,B), red boxes), we collapsed
narrow-band estimates into u�a (5.4-11Hz) and g -band (45-
225Hz) for further analyses (Fig. 3C). The partitioning of b (15-
30Hz) band was not consistent and thus was not included.

The MEG and SEEG u�a band BiS maps showed distinct
neuroanatomical patterns. We therefore next asked whether
DFA and BiS metrics differed between the Yeo functional sys-
tems by testing the null hypothesis (H0) that all observed values
were randomly distributed across brain regions. For each of the
MEG and SEEG band-collapsed DFA and BiS brain maps, we
constructed 105 label-shuffled surrogates to derive the H0 CIs. In
MEG, visual (VIS), somatomotor (SM), and dorsal attention
(DAN) networks (Fig. 3C,D) exhibited greater BiS than expected
by chance (p, 0.05, two-tailed permutation test). SEEG showed
high BiS in frontoparietal (FP), ventral attention (VAN), default
network (DEF), and limbic (LIM) systems (Fig. 3C,E). VIS
showed the lowest BiS in SEEG (p, 0.05, two-tailed permuta-
tion test), although these values were similar to those observed in
MEG.

A Kruskal–Wallis test for variance among subjects’ BiS and
DFA estimates revealed that, in SEEG, individuals showed differ-
ent levels of BiS and DFA estimates between systems (Fig. 3F)
with bistability greater in DEF, FP, and LIM than in VIS and SM
(unpaired t test, p, 0.05, FDR-corrected). There was no statisti-
cally significant regional variation in MEG data.

In both MEG and SEEG, group-average parcel bistability was
correlated with LRTCs (Fig. 3G,H). We validated this analysis in
narrow-band frequencies and found the results to converge well.

To further validate this relationship, we averaged parcel BiS and
DFA within subjects for each Yeo system and found that the sub-
ject BiS were indeed correlated with their DFA estimates on sys-
tems level (Fig. 3I).

Bistability was functionally significant in healthy MEG
subjects
We next asked whether bistability and LRTCs would predict
individual differences in cognition. We assessed working mem-
ory, attention, and executive functions with eight neuropsycho-
logical tests (see Materials and Methods). The BiS and DFA
estimates of the 100 parcels were averaged to four neurophysio-
logical scores for each subject: DFAu�a, DFAg , BiSu�a, and
BiSg , and we then tested their correlation with the neuropsycho-
logical scores. The u�alpha band BiS and DFA were negatively
correlated (Fig. 4A,B) with execution time in the “Zoo Map” flex-
ible planning task (p, 0.05, FDR-corrected for the eight neuro-
psychological tests using the Benjamini–Hochberg procedure).
The negative correlation indicated that subjects with greater
u�a band bistability and larger LRTCs completed the task faster
(Fig. 4C,D), which is in line with prior observations linking
LRTCs with cognitive flexibility (Simola et al., 2017).

To inspect the neuro-behavioral correlations in greater
anatomic detail, we computed Spearman’s correlations between
neuropsychological scores and individual parcel BiS and DFA
estimates. A large fraction of cortical parcels showed significant
neuro-behavioral correlations of u�a band BiS and DFA esti-
mates with ZooMap time, but not with other neuropsychological
scores (Fig. 4E,G, p, 0.05, FDR-corrected for 100 parcels using
the Benjamini–Hochberg procedure for each neuropsychological
test). The correlations of Zoo Map time with DFA estimates
were most pronounced in fronto-parietal, limbic, somatosensory,
and visual areas (Fig. 4F), whereas the correlations with BiS esti-
mates were widespread (Fig. 4H).

Excessive bistability characterized the EZ
Excessive bistability may predispose complex systems to cata-
strophic events. Under the influence of strong state-dependent

Figure 4. Executive functions were correlated with u�a band DFA and BiS estimates in MEG subjects. A, Spearman’s correlation between subject neuropsychological test scores and within
subject mean parcel u�a band DFA. B, BiS estimates collapsed over parcels. Dashed lines indicate 5th and 95th percentile of correlations for surrogate data (Nsurrogate¼ 105, FDR-corrected).
C, D, Subject Zoo map time rank and u�a band parcel-collapsed (C) DFA and (D) BiS estimates. Each marker represents 1 subject. E, Fraction of parcels that showed significant correlation
between neuropsychological test scores and individual parcel u�a band DFA and (G) BiS estimates (p, 0.05, FDR-corrected). F, Parcels showing significant correlations between Zoom map
time scores and u�a band DFA and (H) BiS estimates.
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noise, our model demonstrated increased sensitivity to coupling
strength (Fig. 1E), which suggests that strong bistability could be
an early sign of shift toward supercritical hypersynchrony events
(i.e., the clonic phase of epileptic seizures) (Jiruska et al., 2013).
We thus asked whether bistability estimated from seizure-free,
interictal activity-free resting-state SEEG recording could be in-
formative about epileptic pathophysiology. In particular, we
addressed whether bistability could delineate the EZ and dissoci-
ate EZ signals from signals in nEZ contacts that reflect more
healthy forms of brain activity.

Representative time series (Fig. 5A,B) showed that the EZ
contacts did not show conspicuous epileptic IIE, and the sparse
IIEs were removed from analysis where found (see Materials and
Methods). Interestingly, elevated.80Hz bistability of the EZ
contact was already a visually salient characteristic and stronger
in EZ than in a nearby nEZ contact from the same region. We
assessed bistability and LRTCs in narrow-band frequencies at the
group level for nEZ- versus EZ-electrode contacts (Fig. 5C,D).
Collapsing narrow-band DFA and BiS estimates into broader fre-
quency bands revealed significant differences between nEZ- and

EZ-electrode contacts in b - and g -band BiS estimates with
effect sizes (Cohen’s d) of 0.5 and 0.65, respectively (Fig. 5E).
There was also a difference between nEZ- and EZ-electrode con-
tacts in the d -band DFA exponent with a Cohen’s d of 0.2.

These group-level findings suggest that both bistability and
LRTCs could constitute informative features for classifying nEZ-
and EZ-electrode contacts. We thus conducted an EZ-vs-nEZ clas-
sification analysis using random forest algorithm (Breiman, 2001)
and with frequency-collapsed BiS and DFA estimates as neuronal
features, with the electrode contact location in Yeo systems as an
additional feature. The cross-validation for the classification was a
partition of 80%:20% (training:test) with 500 iterations. This
revealed a reliable outcome with the area under curve (AUC) for
the receiver operating characteristic reaching AUC¼ 0.86 0.002
(mean 6 SD). To identify the most informative components for
the classifier, we assessed global and within-subject feature impor-
tance with the SHAP values (Lundberg et al., 2017). The SHAP
values corroborated that g - and beta-band BiS estimates were
indeed the most important features, followed by contact location
(within a Yeo system), and d -band DFA (Fig. 5F).

Figure 5. Bistability showed strong predictive power for epileptogenic pathophysiology. A, B, Five minutes of broad-band traces and narrow-band power (R2) time series of an EZ (A) and an
nEZ (B) cortical location recorded with two distinct electrode shafts in 1 subject. The two contacts were 19.7 mm apart within the supervisor frontal gyrus, and they were referenced with the
same nearest white matter contact (Arnulfo et al., 2015a). C, Average normalized narrow-band BiS and (D) DFA estimates for all EZ (pink) and nEZ contacts (green) of the patient cohort.
Shades represent 25th and 75th percentiles. E, The effect size of differences between EZ and nEZ contacts in frequency-collapsed BiS (red) and DFA (black). Dashed line indicates 99th percentile
observation from surrogate data (Nsurrogate ¼1000). F, Feature importance estimated using SHAP values. G, The AUC of receiver operating characteristics averaged across subjects (black) and
the AUC of pooled within-subject classification results (blue) when using (1) DFA alone, (2) BiS alone, (3) D&B, and (4) D&B plus contact loci in Yeo systems (D&B(Y)). Dashed lines indicate
99th percentile of AUC observed from 1000 surrogates created independently for each of the four feature sets. H–J, Post hoc inspection of results derived using D&B(Y) feature set (black marker
in G). H, Spearman’s correlation (p, 10�6, n¼ 55) between individual AUC and within-subject mean Cohen’s d between EZ and nEZ in band-collapsed DFA and BiS. I, Receiver operating
characteristics of classification within subjects (thin lines) and mean receiver operating characteristic (thick). J, Within-patient prediction precision as a function of TPR indicated by the magenta
box from I. Red marker represents the population mean. Precision¼ true positive� reported positive.
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Given these encouraging group-level and contact-classifica-
tion results, we quantified the within-subject accuracy of neuro-
nal bistability in localizing the epileptogenic area. We used leave-
one-out validation so that the EZ-vs-nEZ contact classification
was performed for each patient with the rest of the patients serv-
ing as training data. Additionally, to independently evaluate the
contributions of BiS and DFA estimates to classification accu-
racy, we implemented the classification with four feature sets:
DFA alone, BiS alone, combining DFA and BiS (D&B), and com-
bining D&B and SEEG contact location in Yeo systems.

Overall, the within-subject classification accuracy for EZ con-
tacts was higher than chance level across all feature combinations
(Fig. 5G). Classification with all features yielded the best per-
formance at an average AUC of 0.76 0.14 (Fig. 5G, black
marker). BiS alone yielded a greater AUC than DFA alone.
Including the contact-brain system as an additional feature to
D&B increased the AUC by 0.06. The subject AUC values were
correlated with the subject-specific differences in DFA and BiS
estimates between EZ and nEZ (r ¼ �0.53, p, 10�6) (Fig. 5H)
and were not affected by the total numbers of contacts, EZ con-
tacts, nor the ratio of EZ and nEZ contacts (Pearson’s correlation
coefficient, r ¼ �0.06, p¼ 0.66; r ¼ �0.07, p¼ 0.61; r ¼ �0.09,
p¼ 0.50; respectively). Finally, the classifier yielded an average
precision of 0.746 0.30 (mean 6 SD). While the true positive
rate was 0.246 0.17, the false-positive rate was only 0.036 0.03
(Fig. 5G,H), which shows that most EZ contacts identified with
the bistability-based classification were correct, although the clas-
sifier did not identify all true EZ contacts.

Discussion
We investigated whether the awake resting-state human brain
exhibits critical bistability indicative of neurons operating near a
first- rather than second-order phase transition. We advance
here the first comprehensive modeling and experimental evi-
dence for critical-like neuronal oscillation dynamics in a con-
tinuum between a second- and a first-order phase transition.
While classical models of criticality have considered one con-
trol parameter (e.g., the excitation-inhibition balance) to operate
near a second-order phase transition, our findings suggested that
an additional control parameter, positive local feedback, is required
to operate in such a continuum. We showed in MEG and SEEG
data that bistability in neuronal oscillations, likely because of an
underlying first-order phase transition, is likely an important char-
acteristic of brain dynamics and functionally relevant to both the
healthy and diseased human brain functions.

Both second-order (Beggs, 2008; Chialvo, 2010) and first-
order (Millman et al., 2010; Scarpetta et al., 2018) phase transi-
tions, as well as a hybrid type (Buendía et al., 2020, 2022), have
been proposed to account for the critical phenomena observed in
models and in actual brains across species in recent studies.
While a large body of brain criticality literature has been dedi-
cated to the study of phase transitions and associated bifurcation
mechanisms for avalanche dynamics, fewer efforts have consid-
ered the same subject matter in the long-range temporal correla-
tions of neuronal oscillations.

Feedback mechanisms (Buendía et al., 2020) and local hystere-
sis (Buendía et al., 2021, 2022) are known to invoke rich dynamics
near criticality. In line with the canonical bistability models
(Thom, 1972; Freyer et al., 2012), we show that state-dependent
feedback could lead to bistable oscillations in a model convention-
ally used for generating unimodal oscillations. Notably, bistability
occurred within a regimen of scale-free LRTCs dynamics, which

suggested an underlying first-order phase transition near critical-
ity. The positive feedback in our model hence represented a neces-
sary second control parameter for shifting the model in a
continuum between a second- and a first-order phase transition.
While this conceptual model is suitable for generating narrow-
band oscillations in mesoscopic ensembles with uniform connec-
tivity, it is limited and does not produce the large-scale critical
phenomena with anatomic and frequency specificity that we
observed in MEG and SEEG data.

A positive feedback loop is thought to be a generic mechanism
(Sornette and Ouillon, 2012; Hugo et al., 2013) for bistability in a
wide range of modeled and real-world complex systems, including
the canonical sand-pile model (di Santo et al., 2016) and its varia-
tions (Buendía et al., 2020), ecosystems (Kéfi et al., 2007; Villa
Martín et al., 2015), gene regulatory networks (Dubnau and Losick,
2006; Freyer et al., 2012; Kuwahara and Soyer, 2012), intracellular
compartments (Mitrophanov and Groisman, 2008; Bednarz et al.,
2014), and network models of spiking neurons (Cowan et al., 2016;
di Santo et al., 2018).

The positive feedback in our model was represented by a
state-dependent control parameter. In more detailed models for
ensemble activity similar to that measured in SEEG and MEG,
bistability can be introduced through multiple state-dependent
mechanisms. Several theoretical studies have suggested that state
dependency could be a slowly fluctuating physiological parame-
ter that reflects excitability (Jirsa et al., 2014; Cowan et al., 2016)
and resource demand (di Santo et al., 2018). Unlike the constant
control parameters in our model, various factors in vivo, such as
arousal levels and tasks (Fontenele et al., 2019; Fosque et al.,
2021), and individual variability (Fosque et al., 2022; Fuscà et al.,
2023), may be characterized by dynamically changing control pa-
rameters affecting the neuronal operating point in the state
space. For microscopic neuronal dynamics, three mechanisms
have been proposed to account for feedback and state depend-
ency (Doiron et al., 2016), whereas the mechanisms for meso-
scopic and macroscopic state dependency remain unclear.

In MEG and SEEG, we observed significant bistability and
LRTCs in spontaneous amplitude fluctuations of neuronal oscil-
lations from 2 to 225Hz across the neocortex. In line with our
modeling results, MEG and SEEG bistability and LRTCs were
positively correlated with within but not between u�a, and g
bands on whole-brain level (Fig. 3G,H) and within functional
systems across individuals (Fig. 3I). These cohort-level, fre-
quency-specific correlations suggested that: (1) bistable dynamics
are likely dependent on distinct frequency bands of neuronal
oscillations as previously reported for LRTCs and synchrony
(Palva et al., 2013; Zhigalov et al., 2015; Fuscà et al., 2023); and
(2) brain dynamics follow a gradient from “low LRTCs and
weakly bistable” to “high LRTCs and strongly bistable.” As the
key evidence for functional significance, higher u�a band bist-
ability in healthy MEG subjects was a trait-like predictor (Palva
et al., 2013) for better cognitive performance, whereas in the
SEEG subjects, excessive b and g band bistability was associated
with epileptogenic pathophysiology, implying a “catastrophic
shift” in the epileptic brain (Thom, 1972).

Bistability, in general, could be associated with a dichotomy
of both beneficial and detrimental outcomes. Organisms can op-
erate in a bistable mode that is thought to reflect a dynamic motif
favorable to adaptation and survival (Dubnau and Losick, 2006;
Freyer et al., 2012; Bednarz et al., 2014). However, excessive bist-
ability characterizes catastrophic shifts in many complex systems
(Sornette and Ouillon, 2012; Hugo et al., 2013), such as irrevoca-
ble environmental changes (Barnosky et al., 2012; Boerlijst et al.,
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2013; Villa Martín et al., 2015), wars and conflicts (Díaz, 2017),
and sudden violent vibrations in aerodynamic systems (Xin and
Shi, 2015). In healthy MEG subjects, bistability and LRTCs were
correlated, and higher u�a band BiS and DFA estimates pre-
dicted better cognitive performance. In epileptic patients, exces-
sive b - and g -band BiS, but not DFA, best characterized EZ.
The findings from these two datasets suggest a functional gradi-
ent, wherein moderate bistability reflect functional advantages,
while excessive bistability be a sign of pathologic hyperex-
citability. The pathologic bistability could be associated
with hyperexcitability, excessive synchrony, high resource
demands, and likely subsequent oxidative stress and tissue
damage (Salim, 2017). This speculation is in accordance with bio-
physical models of seizures that suggest a crucial role of a discon-
tinuous transition (Freyer et al., 2012; Breakspear, 2017) in
generalized seizures (Breakspear et al., 2006; Jirsa et al., 2014).

With invasive SEEG, we found consistent and accurate per-
formance of the BiS estimates in EZ localization, which suggests
a great potential for broader clinical utility (e.g., using noninva-
sive MEG or EEG). Future work could exploit the presence of
widespread bistability to large-scale biophysical models of neural
dynamics, building on the analytic link between the simplified
model used here and physiologically derived neural mass and
mean field models. Whereas the simple model yields dynamical
insights, the large-scale biophysical models are crucial for under-
standing biological mechanisms (Breakspear, 2017), including
those that describe seizure propagation in individual patient
brain networks (Proix et al., 2017; Jirsa et al., 2023).

In theory, power-law scaling (Beggs and Timme, 2012; Beggs,
2022) and bistability (Freyer et al., 2012) may be seen in noncriti-
cal systems. Hence, to claim criticality, strong criteria must be
satisfied (Sethna et al., 2001). In both human MEG and SEEG
data, we have shown that local LRTCs are correlated with large-
scale phase synchrony (Fuscà et al., 2023) and avalanche dynamics
(Palva et al., 2013; Zhigalov et al., 2015); synchrony and scale-free
networks are also correlated with distinct modular structures
(Zhigalov et al., 2017). Here, we present novel evidence for coloc-
alization of LRTCs and bistability that is relevant for cognitive
function. These correlations between categorically different esti-
mates of local and global critical dynamics offer a strong support
to the brain criticality hypothesis. Building on these novel results,
we propose that human brain dynamics operates in a continuum
between the classic second- and the first-order phase transition
near criticality, which is best described by at least two control pa-
rameters: the E/I balance and positive local feedback mechanism.
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