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Abstract 

Neurological conditions affecting the sensorimotor system have a profound impact on 

individuals’ physical independence and are associated with a considerable socioeconomic 

burden. Reliable functional biomarkers allowing early diagnosis of these conditions or  

targeting treatment and rehabilitation can reduce this burden. Magnetoencephalography 

(MEG) can non-invasively measure the brain’s salient rhythmic patterns such as the 

somatomotor (‘rolandic’) rhythm. This rhythm shows intermittent high amplitude ‘events’ in 

the beta (14-30 Hz) frequency range which predict behavior across tasks and species and 

are altered by neurological diseases affecting the sensorimotor system. Thus, the 

sensorimotor resting beta phenotype is a promising candidate biomarker of sensorimotor 

function. A prerequisite for use as a biomarker is that it can be quantified reliably across 

different measurement sessions. Here, using MEG, we assessed the test-retest stability of 

spontaneously occurring sensorimotor power spectral characteristics, including both 

aperiodic (1/f) as well as beta band fluctuations (‘beta events’) in a cohort of 50 healthy 

human controls. Test-retest reliability across two separate measurement sessions was 

assessed using the intraclass correlation coefficient (ICC). Beta events were determined 

using a thresholding-based approach on a narrow-band filtered amplitude envelope 

obtained using Morlet wavelet decomposition across a range of parameters (recording 

length, amplitude threshold and filtering bandwidth). We find that both aperiodic power 

spectral features as well as several beta event characteristics show good to excellent test-

retest stability. Especially aperiodic component power spectral features (ICC 0.77-0.88), 

but also measures of beta event amplitude (ICC 0.74-0.82) were found to be very stable, 

while measures of individual beta event duration were less reliable, especially for the left 
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hemisphere (ICC right ~0.7, left ~0.55). Recordings of 2-3 minutes were sufficient to obtain 

stable results for most parameters. Important for potential clinical applications, 

automatization of beta event extraction was successful in 86 % of cases. Beta event rate 

and duration measures were more sensitive to analysis parameters than the measures of 

event amplitude. The results suggest the sensorimotor beta phenotype is a stable feature 

of an individual’s resting brain activity even for short, 2-3 minute recordings which can be 

easily measured in patient populations, facilitating its use as a potential clinical biomarker. 

 

Introduction 

Some neurologic diseases affecting the motor system, such as e.g. Parkinson’s disease, 

are difficult to diagnose at their early stages due to lack of easily observable brain 

structural changes such as e.g. brain MRI changes. Furthermore, disease trajectories and 

rehabilitation outcomes are variable and often unpredictable. Currently, biomarkers for 

estimating individual disease courses are lacking. Functional biomarkers reflecting the 

processes underlying motor dysfunction might help in the differential diagnostics, or in 

estimating, e.g., the rate of disease development or the recovery potential in individual 

patients. Such markers could also improve targeting of treatment and rehabilitation. 

 

Non-invasive electrophysiological recordings, such as electroencephalography (EEG) and 

magnetoencephalography (MEG), measure brain activity resulting from the spatial and 

temporal summation of cellular neural activity of the brain’s underlying cortical areas 

(Buzsáki et al., 2012). The measured activity depends on factors such as neuronal density, 

size and shape, the anatomy of neural network connections, and their relative activity at 

any given point (Buzsáki et al., 2012). Thus, MEG and EEG measures reflect the effect of 

different structural and functional changes in cortical activity and have considerable 

potential as functional biomarkers.  

   

One promising candidate functional biomarker is the rolandic 20-Hz beta rhythm which is 

observed consistently in humans (Hari and Salmelin, 1997) and across other species 

(Feingold et al., 2015; Haegens et al., 2011; Sherman et al., 2016). Cortical beta activity 

plays an integral role in several perceptual and cognitive functions and it is modulated in a 

variety of tasks including tactile processing (Haegens et al., 2011; Pfurtscheller et al., 

2001), movement (Feingold et al., 2015; Salmelin and Hari, 1994), action perception 

(Babiloni et al., 2002; Hari et al., 1998) and attention (Sacchet et al., 2015; Van Ede et al., 

2011).  
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Cortical beta band activity displays a characteristic pattern of bursting over time, occurring 

in intermittent high amplitude ‘beta events’ alternating with lower amplitude periods 

(Feingold et al., 2015; Jones, 2016). Beta activity is particularly patterned in the 

sensorimotor cortex (Seedat et al., 2020), where beta event rate predicts behavioral 

outcome in humans and rodents across tasks (Shin et al., 2017). In humans, spontaneous 

resting EEG beta band power (Smit et al., 2005; Van Beijsterveldt et al., 1996), as well as 

beta event parameters (Pauls et al., 2023) have been shown to be heritable. 

 

Neurological conditions with related motor dysfunction, such as stroke (Bartur et al., 2019; 

Laaksonen et al., 2013, 2012; Parkkonen et al., 2018; Rossiter et al., 2014; Schulz et al., 

2021), Parkinson’s disease (Pauls et al., 2022; Vinding et al., 2020) and amyotrophic 

lateral sclerosis (ALS) (Dukic et al., 2022; Proudfoot et al., 2017) are associated with 

changes in the sensorimotor cortical beta band signal. Furthermore, sensorimotor beta 

characteristics correlate with symptom severity (Bartur et al., 2019; Laaksonen et al., 

2012; Parkkonen et al., 2018; Pauls et al., 2022; Rossiter et al., 2014) and clinical 

recovery (Laaksonen et al., 2013, 2012; Parkkonen et al., 2018). 

 

In addition to rhythmic, or ‘periodic’, components, spontaneous cortical activity also 

contains prominent aperiodic (‘1/f’) components which show exponential decay 

characteristics. This aperiodic signal is postulated to reflect excitation-inhibition balance 

(Gao et al., 2017), and it is modulated, e.g., by brain maturation (Hill et al., 2022; 

McSweeney et al., 2021; Tröndle et al., 2022) and aging (Voytek et al., 2015; Wilson et al., 

2022). It is also highly heritable (Pauls et al., 2023) and appears to be altered in several 

neurological and neuropsychiatric conditions, such as Parkinson’s disease (Helson et al., 

2023), dystonia (Semenova et al., 2021) and ADHD (Ostlund et al., 2021).  

 

Taken together, these studies have shown that sensorimotor beta activity and aperiodic 

fluctuations are prominent, spontaneously occurring and heritable characteristics of 

ongoing brain activity that are closely linked to sensorimotor functions, are preserved 

across mammalian species and show changes associated with sensorimotor symptoms in 

different neurological disease conditions. Given their salience and ease of acquisition, they 

are thus potential cortical biomarkers of sensorimotor disease state and its reactivity to 

treatment. 
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However, a prerequisite for using them as biomarkers is their intraindividual signal stability. 

In general, test–retest reliability for various MEG responses of clinical interest is good, as 

suggested, e.g., for measures of somatosensory processing (Illman et al., 2022; 

Piitulainen et al., 2018), picture naming (Ala-Salomäki et al., 2021), as well as whole-brain 

spontaneous oscillatory power (Martín-Buro et al., 2016) and resting state functional 

connectivity (Garcés et al., 2016). Earlier EEG studies have also demonstrated good test-

retest reliability of global beta band power at rest (Fingelkurts et al., 2006; Pollock et al., 

1991). Decomposing cortical sensorimotor activity into its different dynamic components, 

or ‘beta events’, adds detail compared to the assessment of mere beta power globally, and 

the different beta event parameters’ test-retest reliability has not been assessed before. 

Therefore, we determined whether and to what extent different spontaneous sensorimotor 

beta event parameters and aperiodic activity are reliable across sessions. 

 

Materials and methods 

Subjects 

50 healthy subjects (age mean +/- STD 45 +/- 20 years, range 21-70 years) screened to 

exclude pre-existing neurological disorders, learning disabilities, and language disorders 

were included in the study after giving written informed consent. The study was approved 

by the Aalto University ethics committee and carried out in accordance with ethical 

guidelines set out in the Declaration of Helsinki.  

MEG recordings 

Measurements were performed in a magnetically shielded room (Imedco AG, Hägendorf, 

Switzerland) with a 306-channel Vectorview neuromagnetometer (Megin Oy, Helsinki, 

Finland) consisting of 204 planar gradiometers and 102 magnetometers. Spontaneous 

cortical activity was recorded with a 1 kHz sampling rate, continuous head position 

monitoring (cHPI) and band-pass filtering at 0.03-330 Hz in two separate sessions one-two 

weeks apart, for five minutes each, while participants were resting with their eyes open. 

Vigilance was assessed via video during measurements to control subjects kept their eyes 

open.  

MEG signal processing and parameter extraction 

Subjects’ data were assessed visually for vigilance effects and to exclude artifacts and 

periods with significant artifact were excluded from further analysis. For suppressing 

external artifacts, MEG data were preprocessed using the temporally extended signal 
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space separation method (tSSS, (Taulu and Kajola, 2005) implemented in the MaxFilter 

software (Megin Oy, Helsinki, Finland, version 2.2.15)). Subject’s head movements were 

compensated based on the cHPI recordings, and individual MEG recordings were 

transferred to a common head space using MaxFilter’s signal space separation-based 

head transformation algorithm. One subject was excluded because head transformation to 

the common space introduced considerable noise, compromising data quality. Further 

signal processing was done using MNE-python version 1.3 (Gramfort et al., 2013). After 

band-pass filtering the data to 2-48 Hz with a one-pass, zero-phase, non-causal FIR filter 

(MNE firwin filter using a Hamming window), power spectral densities (PSD) were 

calculated using Welch’s method with a non-overlapping Hamming window and 2048-point 

Fast Fourier transformation. 

Channel selection 

The subsequent analysis steps are illustrated in Figure 1 extending the approach 

previously used (Pauls et al., 2023, 2022). For each hemisphere, we defined a region of 

interest (ROI) of 15 gradiometer channel pairs per hemisphere centered over the 

sensorimotor cortices. To quantify the PSD at each recording site, we computed the vector 

sum of the two orthogonally oriented planar gradiometers at each sensor location (‘vector 

PSD’): 

PSDvector = sqrt (PSDch1
2+ PSDch2

2) 

The resulting 15 vector-sum PSDs per hemisphere were then decomposed into a periodic 

and an aperiodic component using the FOOOF algorithm (Donoghue et al., 2020). After 

subtraction of the aperiodic component, the remaining periodic component was plotted for 

all 15 vector-sum PSDs. From the vector-sum PSD spectra, the channel pair with the most 

prominent spectral peak in the beta range was selected per hemisphere (‘the peak 

channel pair’) and the frequency of the power peak was noted (‘peak beta frequency’) (see 

Figure 1A). This choice of channel and frequency was carried out in three different ways: 

(1) an entirely automated approach, where the ‘peak channel’ was selected based on the 

area under curve (AUC) of the periodic part of the PSD  between 14 and 30 Hz, and the 

peak was detected automatically as the highest amplitude in this frequency range; (2) a 

manual peak detection approach, where vector-sum PSD plots were visually inspected, 

the frequency of the highest peak noted, and the channel with the maximum amplitude at 

this frequency selected as the ‘peak channel’; and (3) a combined approach where peak 

channel and peak frequency were selected automatically as described, but all plots 
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underwent visual control and the assignment of peak frequency (and sometimes channel) 

was re-adjusted if necessary. Typical reasons for correction of the peak frequency (and 

channel) were cases with strong alpha peaks and weak beta peaks, where the 

automatically detected beta peak was located on the shoulder of the alpha frequency 

peak.  

Beta event extraction 

The channel pair and peak beta frequency corresponding to the chosen peak vector-sum 

PSD were used for beta event analysis (see Figure 1B). The channel pair’s raw, unfiltered 

time series data were downsampled to 200 Hz, high pass filtered at 2 Hz and decomposed 

by convolving the signal with a set of complex Morlet wavelets within the frequency range 

of 7-47 Hz with 1 Hz resolution and n_cycles=frequency/2. After this, the amplitude 

envelope was derived by averaging the signal within a certain beta frequency range. This 

was done either (1) broad-band across the entire beta frequency band (14-30 Hz) or (2) 

narrow-band, i.e., ± 2 Hz around the individual peak beta frequency chosen in one of the 

three ways described above. The vector sum over both channels’ beta band time series 

was calculated and rectified, to obtain one beta band amplitude envelope per channel pair. 

The envelope was smoothed with a 100-ms FWHM kernel and thresholded at the 75th 

percentile value. Periods exceeding this threshold for 50 ms or longer were defined as 

beta events. For event amplitude and event duration, the mean, median, robust maximum 

(defined as mean of the top 5% values) and standard deviation values were calculated 

(see Figure 1C for illustration). Furthermore, events per second (event rate) and event 

dispersion were calculated as described previously (Pauls et al., 2022). Times between 

beta events were defined as waiting times. To estimate the variation of waiting times 

(‘event dispersion’), we calculated the coefficient CV proposed by (Shinomoto et al., 2005), 

defined as the waiting times’ standard deviation � divided by their mean �: 

�� �
�

�
 

 

All values were calculated for both hemispheres in all subjects to obtain a sensorimotor 

signature phenotype (Figure 1C). The sensorimotor phenotype features included PSD 

peak power and frequency in the 14-30 Hz beta band, total periodic beta power, 1/f 

exponent (chi) and offset, as well as beta event characteristics including event duration 

and amplitude mean, median, standard deviation, robust maximum, event rate and 

dispersion (see Figure 1C).  
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Beta event extraction was tested for a range of parameters to investigate their effect on 

the phenotype results and their stability. The narrow band filter bandwidth was varied (+/-

1, 2, 3, 4, 5 Hz, and broad-band), and the amplitude threshold was tested for different 

percentiles (50th, 60th, 70th, 75th, 80th, 85th and 90th). 

Figure 1: Sensorimotor phenotyping. A. Channel and peak frequency selection: In a predefined region of 

interest (ROI), channel pairs were combined using vector sum calculation, and the aperiodic (1/f) component 

was extracted using FOOOF as described previously (Pauls et al. 2022, Pauls et al. 2023). Peak channel 

and frequency within the ROI were selected either (1) manually by selecting the channel with the highest 

beta spectral peak frequency, (2) in an automated fashion by selecting the channel with the highest periodic 

beta power, or (3) using automation with visual-manual correction of the selected frequency and channel if 

necessary. B. Beta event extraction: The raw signal was convolved with a set of complex Morlet wavelets, 

and the resulting signal averaged either broad-band (14-30 Hz) or narrow-band (+/-2 Hz around the peak 

beta frequency) to obtain an amplitude envelope which was thresholded at the 75th percentile (red line). 

Periods exceeding this threshold are defined as ‘beta events’. C. Sensorimotor phenotype parameters 
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included PSD peak power and frequency in the 14-30 Hz beta band, total periodic beta power, 1/f exponent 

(chi) and offset, as well as beta event characteristics including event duration and amplitude mean, median, 

standard deviation, robust maximum, event rate and dispersion.  

Test-retest reliability analysis 

Test-retest reliability was assessed using the intraclass correlation coefficient implemented 

in Pingouin (intraclass_corr function). ICC analyses were conducted on all the phenotype 

parameters described in Figure 1C, by comparing the outcomes between sessions 1 and 

2. ICC is defined as follows: 

ICC(3,1) = (BMS- EMS) / (BMS + (k-1) * EMS), 

where BMS = between-subjects mean square, EMS = error mean square, and k = number 

of sessions. ICC below 0.4 is considered poor, 0.40-0.59 fair, 0.60-0.74 good, and 0.75-

1.00 as excellent consistency (Cicchetti, 1994). We used ICC(3,1), with a fixed set of 

sessions (n=2) during each of which all phenotype parameters were assessed. 

Code and data availability 

Data cannot be made publicly available due to Finnish data protection law. Data can, 

however, be shared for research collaboration with an amendment to the research ethics 

permit and a related data transfer agreement. All analysis code will be made available on 

GitHub.  
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Results 

Test-retest reliability 

Test-retest reliability was good or excellent for many of the phenotypic traits. Figure 2

shows example scatter plots for three of the beta event parameters and their test-retest 

reliability in the left hemisphere.  

Figure 2 – Scatter plots illustrating three of the sensorimotor phenotypes in the left hemisphere when using 

automated peak assignment with manual control. The points refer to individual subjects and subjects are 

labeled. 

The three approaches using individual narrow-band filtering for determining beta events 

produced very similar results, whereas using a broad-band filter systematically altered the 

results (see Figure 3, discussed in more detail later). Entirely manual peak assignment did 

not significantly improve results and was very labor-intensive. On the other hand, 

automated peak assignment missed the PSD beta peak that was by visual evaluation the 

best one in 14 % of the cases. In most of these cases (86%), automatic peak assignment 

missed the periodic peak, usually in favor of a lower frequency peak located on the 

‘shoulder’ of a large alpha frequency peak. In the remaining 14%, the peak channel 

changed because the periodic beta peak was visually more distinct in a different channel. 

We thus chose to work with the approach combining automated peak selection with 

manual control.   

Intraclass correlation coefficient (ICC) values for this approach (‘automated + manual’) are 

given in Table 1, and for all four approaches in Supplementary Table 1. Test-retest 

reliability for most parameters was good or excellent, but some parameters, notably event 

dispersion, proved poor (Figure 2). Interestingly, parameters of event amplitude were 

more reliable in the left hemisphere, whereas event duration parameters were more stable 

in the right hemisphere. 
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Table 1: Test-retest reliability of different sensorimotor phenotypes between two 

measurement sessions (automated peak selection with manual control). Light gray 

shading indicates ICC >=0.6, darker gray ICC >= 0.75. *The degrees of freedom df1 and 

df2 are 48 for all parameters.  

Figure 3: Effect of channel selection and event analysis strategies illustrated for different parameters (mean 

event amplitude, mean event duration and event rate). Blue – automated channel selection, broad band 

event extraction, orange – automated channel selection, narrow band event extraction, green – automated 

channel & peak selection and manual (human observer) control, pink – manual (human observer) channel & 

peak selection. Broad-band beta event extraction systematically shortens the duration of events, reduces 

their amplitude and increases their rate. Channel selection strategy has fewer and less systematic effects on 

the parameters. 

Broad- vs. narrow band event characteristics  

Use of broad-band filtering to determine beta event characteristics systematically affected 

event parameters, shortening event duration, increasing event rate and reducing event 
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amplitudes compared to narrow-band event extraction (see also Figure 3). Furthermore, 

broad-band filtering decreased the signal to noise ratio (SNR), as illustrated in Figure 4. 

 

Figure 4: Effect of broad-band (14-30 Hz) vs. narrow band (peak frequency +/- 2 Hz) filtering on amplitude 

envelope and signal to noise ratio (SNR), shown for a prominent (A) and a weaker (B) beta range spectral 

peak. The selection of the individual peak and bandwidth has relatively more effect in the prominent peak 

case in which the SNR decreases with increasing filtering bandwidth.  

Effect of recording length and processing parameters on ICC 

Finally, we tested the effect of event extraction parameters (filtering bandwidth & amplitude 

threshold) as well as recording length on the test-retest reliability (see Figure 5). Overall, 

event amplitude showed good or excellent reliability and was relatively invariant to different 

parameters except for recording duration (Figure 5, middle column). Event duration was 

more noise- and parameter-sensitive (Figure 5, first column). Event rate reliability was 

fairly stable for longer recording durations. Event dispersion had the lowest reliability of all 

parameters, also at longer recording durations (Figure 5, last column).  

ICC stabilized reasonably well at 2-min recording length for most beta event parameters, 

so even short recordings may be enough for obtaining reliable results (Figure 5, top row). 

However, event rate estimates benefitted from longer recordings. A bandwidth of 4 Hz was 

optimal for event duration assessment as well as event rate, after which ICC decreased 

somewhat (Figure 5, middle row). Event amplitude appeared invariant to bandwidth. 70-

80% percentile thresholds were optimal for both the event duration as well as the event 

rate parameter, while event amplitude was mostly invariant to this parameter (Figure 5, 
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bottom row). Only dispersion appeared to benefit from higher percentile thresholds, raising 

ICC to around 0.5-0.6.  

 

 

Figure 5: Effect of 

different event extraction 

parameters on session-

to-session event 

parameter stability as 

assessed by ICC. Panels 

depict the following 

parameters: top row -

effect of recording 

duration (s), middle row -

peak bandwidth (Hz), 

bottom row - % amplitude 

threshold, with ICC on 

the y-axis. Columns: 1st -

event duration, 2nd -

event amplitude, 3rd -

event rate & dispersion. 

Solid lines - left 

hemisphere, dashed 

lines - right hemisphere. 

 

 

Discussion 

We demonstrate that human cortical sensorimotor dynamic cortical beta event parameters 

and 1/f characteristics as measured with resting-state MEG show good test-retest 

reliability. The results were robust across a range of analysis parameters including 

different filtering bandwidths and amplitude thresholds and appear to be stable even for 

just 2-3 minutes of recording for many parameters. The results suggest that sensorimotor 
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beta phenotype is a stable feature of an individual’s brain activity with good potential as a 

clinical biomarker.  

Earlier studies of test-retest reliability of sensorimotor functional measures 

Some previous studies have assessed sensorimotor system spontaneous and task-related 

measures’ test-retest reliability. In an MEG study assessing spontaneous resting-state 

oscillatory beta band power stability, ICCs ranged from 0.74 to 0.86 for frontal and parietal 

brain areas (Martín-Buro et al., 2016), comparable to our results for the left hemisphere 

beta power. In their study, beta power was separated into low and high beta power (13-20 

vs. 20-30 Hz). Furthermore, the total band power included the aperiodic signal component, 

which was assessed separately here. Cortico-kinematic coherence, a measure of 

proprioception-related brain processing, has been demonstrated to have very good 

stability, 0.86 for the dominant and 0.97 for the non-dominant hand (Piitulainen et al., 

2018). Stimulus-related sensorimotor beta suppression and rebound phenomena in 

response to sensory (tactile and proprioceptive) stimuli also show good to excellent 

stability (Illman et al., 2022). However, task-related functional measures rely on some 

degree of collaboration (and preserved function) from the subject, which can limit 

applicability in clinical settings. Thus, brief measurements of spontaneous brain activity as 

used here extend the spectrum of possible applications.  

 

Hemispheric differences 

We found a degree of hemispheric lateralization for some of the parameters. The test-

retest reliability was slightly higher for the left, dominant hemisphere for the amplitude 

parameter, probably reflecting the fact that left hemisphere spectra tend to have clearer 

periodic signal components. Interestingly, the beta event duration parameters as well as 

event rate were more reliable for the right hemisphere despite the fact that defining the 

peak was more difficult. A possible explanation for this result is that the dominant left 

hemisphere has more variable resting activity. On the other hand, the right hemisphere 

duration parameter may be more stable because of its relatively lower SNR, thus less 

reflecting the actual periodic beta signal fluctuations and more the general noise level or 

other, non-periodic activity. This effect can also be seen in the broad vs. narrow band 

signal extraction: broad-band signal extraction produces good ICC values, especially for 

the right hemisphere. The ICC difference between ‘broad’ and ‘narrow’ band extraction 

strategies is bigger for the left hemisphere with a more pronounced PSD beta peak. 
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Potential of resting beta phenotype as a biomarker 

There are no standard values determining acceptable reliability using ICC, but different 

suggestions have been made for their interpretation (Cicchetti, 1994; Koo and Li, 2016). 

ICC values above 0.6 (Cicchetti, 1994) or 0.75 (Koo and Li, 2016) have been considered 

to indicate good test-retest agreement, and values above 0.75 (Cicchetti, 1994) or 0.9 

(Koo and Li, 2016) to indicate excellent test-retest agreement. Thus, many of the 

described event parameters in the present study show good to excellent test-retest 

reliability. A low ICC can relate to low test-retest agreement but can also relate to lack of 

variability among subjects (small dynamic range), small number of subjects or a low 

number of repetitions. The number of subjects in the current study should be sufficient to 

obtain reasonable ICC values and was the same for all studied parameters. However, the 

dynamic range was low, e.g., for event dispersion, with most subjects clustering in a very 

limited range of values, possibly contributing to the low ICC. Overall, the level of test-retest 

reliability obtained in the current study was good, supporting the use of the features of 

interest also in clinical settings.  

 

Besides technical considerations, biological and pathophysiological considerations are 

also important for biomarker development. As outlined earlier, sensorimotor beta activity 

and dynamic beta events are detectable across different mammalian species including 

humans, non-human primates and rodents (Feingold et al., 2015; Haegens et al., 2011; 

Hari and Salmelin, 1997; Sherman et al., 2016) and they have been found to be heritable 

(Pauls et al., 2023; Smit et al., 2005; Van Beijsterveldt et al., 1996), suggesting that the 

brain’s sensorimotor signature is quite preserved across the  sensorimotor system’s 

evolution. Furthermore, previous studies have shown disease-related beta changes at the 

group level (Bartur et al., 2019; Dukic et al., 2022; Laaksonen et al., 2013, 2012; 

Parkkonen et al., 2018; Pauls et al., 2022; Schulz et al., 2021; Vinding et al., 2020). 

Finally, the human brain’s sensorimotor system has been extensively studied and is quite 

well understood. We suggest that these factors, in combination with good test-retest 

reliability demonstrated here, make sensorimotor beta activity a good candidate 

electrophysiological biomarker.  

 

Limitations and future directions 

Although the analysis approach used here was largely automated, it still required some 

manual preprocessing (adjustment of peaks in some cases with weak beta peak). The 

need for a human observer is always associated with a certain degree of observer bias, 
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and different observers and experience levels can lead to increased levels of uncertainty. 

Furthermore, human observers need to be trained to make the process as reliable as 

possible. Here, only one observer (AP) carried out all manual beta peak selection. Future 

studies are needed to further automate beta event characterization.  

 

Furthermore, sources of variations in signal to noise ratio (SNR) in PSD spectra need to 

be explored. Some subjects have relatively small periodic components in their PSD 

spectra for unknown reasons, and poor PSD SNR is not always clearly attributable to 

measurement noise. In many studies, subjects with poor SNR are excluded before further 

data analysis. However, after excluding clear problems with measurement quality (external 

noise), it would be interesting to explore reasons for poor SNR, which might in fact be 

related to brain processing features or brain state in these subjects. Here, we excluded 

one subject due to SNR considerations arising from problems related to data collection 

(poor head positioning during one session). Some subjects had bigger session to session 

fluctuations than others due to factors not obviously related to measurement factors. 

Future studies should assess the sources of session-to-session variability, e.g., factors 

such as vigilance. We assessed vigilance clinically during the measurement (via video) 

and the eyes open resting condition was used. The raw data was visually assessed for 

vigilance effects also (exclusion of gradual slowing of activity) to ensure steady vigilance 

levels. Thus, major fluctuations in vigilance have been excluded, but small changes in 

alertness or habituation effects across sessions are possible. Quantitative, automated 

vigilance assessment may also be helpful in the future.  

 

The sensorimotor phenotype was assessed at the sensor-level. While source-level 

approaches add some level of spatial-anatomical resolution, they also introduce more data 

processing and analysis choices, making the approach less feasible for potential clinical 

applications and possibly leading to biased estimates. Furthermore, clinically useful 

source-level analyses would necessitate suitable cortical parcellations to avoid multiplying 

the amount of data. As MEG is most sensitive to sulcal brain activity, established 

parcellations  taking this into account would be needed. Here, we were specifically 

interested in testing the reliability of a simple approach using sensor-level data to 

characterize the resting sensorimotor phenotype for potential clinical applications. If the 

potential caveats of source-level analyses (amount of data processing, automated 

analyses, suitable parcellations) can be solved, future studies should address whether 

more reliable measures can be obtained at the source- compared to the sensor-level. 
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Pipeline recommendation 

In the current study, recording durations of 2-3 minutes were sufficient to get stable beta 

event results for most parameters. For most of the examined parameters, short good-

quality data segments were preferable to longer data segments with more variable data 

quality. Only the event rate, and to some extent the event duration parameters, benefited 

from longer recording times.  

Automation of beta peak detection was successful for 86 % of the hemispheres: We 

recommend at least visual control to ascertain correct beta peak assignment. In the future, 

optimized automatization approaches which work for most subjects would be helpful to 

eliminate human observer bias. Alternatively, broad-band (13-30 Hz) beta event extraction 

can be done, but use of a specific beta peak channel and beta band peak for extraction of 

beta event information increased stability of the beta event duration parameter. A beta 

amplitude threshold of 75% and 4 Hz bandwidth appears appropriate, giving a good 

reliability for all beta event parameters. Estimation of event dispersion had low reliability 

but improved at higher percentage thresholds, so this parameter might require different 

processing settings.  

Conclusions 

In summary, we demonstrate that a robust resting-state sensorimotor phenotype wth good 

or excellent test-retest stability can be obtained from MEG data in healthy subjects 

relatively easily even from short, 2-3 minutes long MEG recordings. This sensorimotor 

beta phenotype appears to be a relatively stable feature of an individual’s resting brain 

activity which can be easily measured also in patient populations, facilitating its use as a 

potential clinical biomarker. 
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