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Abstract

New biomarkers are urgently needed for many brain disorders; for example, the diagnosis

of mild traumatic brain injury (mTBI) is challenging as the clinical symptoms are diverse and

nonspecific. EEG and MEG studies have demonstrated several population-level indicators

of mTBI that could serve as objective markers of brain injury. However, deriving clinically

useful biomarkers for mTBI and other brain disorders from EEG/MEG signals is hampered

by the large inter-individual variability even across healthy people. Here, we used a multivar-

iate machine-learning approach to detect mTBI from resting-state MEG measurements. To

address the heterogeneity of the condition, we employed a normative modeling approach

and modeled MEG signal features of individual mTBI patients as deviations with respect to

the normal variation. To this end, a normative dataset comprising 621 healthy participants

was used to determine the variation in power spectra across the cortex. In addition, we con-

structed normative datasets based on age-matched subsets of the full normative data. To

discriminate patients from healthy control subjects, we trained support-vector-machine clas-

sifiers on the quantitative deviation maps for 25 mTBI patients and 20 controls not included

in the normative dataset. The best performing classifier made use of the full normative data

across the entire age and frequency ranges. This classifier was able to distinguish patients

from controls with an accuracy of 79%. Inspection of the trained model revealed that low-fre-

quency activity in the theta frequency band (4–8 Hz) is a significant indicator of mTBI, con-

sistent with earlier studies. The results demonstrate the feasibility of using normative

modeling of MEG data combined with machine learning to advance diagnosis of mTBI and

identify patients that would benefit from treatment and rehabilitation. The current approach

could be applied to a wide range of brain disorders, thus providing a basis for deriving MEG/

EEG-based biomarkers.
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Author summary

Mild traumatic brain injury is extremely common, but no definite diagnostic method is

yet available. Objective markers for detecting brain injury are needed to direct care to

those who would most benefit from it. Here we present and demonstrate the feasibility of

a new approach based on MEG recordings that first explicitly addresses the variability in

brain dynamics within the population through normative modeling, and then applies

supervised machine-learning to detect pathological deviations related to mTBI. The

approach can easily be adapted to other brain disorders as well and could thus provide a

basis for an automated tool for analysis of MEG/EEG towards disease-specific

biomarkers.

Introduction

Due to its high prevalence and potential long-term adverse health effects, accurate diagnosis of

mild traumatic brain injury (mTBI) is of high importance. Objective diagnosis of mTBI

remains a challenge, however, as structural imaging methods such as magnetic resonance

imaging (MRI) as well as neuropsychological testing often fail to detect clinically significant

abnormalities [1,2]. Diagnosis of mTBI after the acute phase is further complicated by post-

traumatic symptoms that are nonspecific to mTBI and highly variable across patients [3].

Studies employing noninvasive functional neuroimaging techniques such as functional

magnetic resonance imaging (fMRI), electroencephalography (EEG) or magnetoencephalog-

raphy (MEG) have provided group-level evidence of changes in brain activity following mTBI,

even several months after the trauma and in the absence of clinical symptoms [4–7]. New

objective measures based on functional brain imaging might prove essential for improving the

accuracy and reliability of the diagnosis, and for identifying patients who are at risk of chronic

symptoms and would benefit from intervention.

Electrophysiological recordings of brain activity, such as MEG and EEG, provide a range of

measures (e.g. amount of low-frequency activity, posterior alpha frequency and power, alter-

ations in functional connectivity, cross-frequency coupling, or network topology measures)

that reflect the altered functional state of brain regions and networks after mTBI [5,8–11].

However, the ability to determine the clinical status of individual mTBI patients based on sin-

gle–or univariate–measures is extremely limited [12], and it is not clear which MEG/EEG mea-

sures are most informative of disease pathology. Thus, compound–or multivariate–analysis

within a machine-learning framework that jointly exploits multiple measures could potentially

increase our ability to accurately detect pathology related to mTBI. Recent studies applying

machine learning have shown promise in identifying individuals with mTBI from MEG data

using measures of oscillatory activity [13,14], functional connectivity and network topology

[11,15,16].

Extraction of objective measures from functional imaging data in mTBI is particularly chal-

lenging since the mechanism, location and nature of the head insult, as well as the clinical

symptoms are largely heterogeneous. Moreover, individual variation in brain activity is large

even in the healthy population and the majority of mTBI patients experience a prompt recov-

ery. Therefore, regarding patients and control subjects as clearly delineated and distinct

groups, may not properly reflect the nature of this disorder [17,18]. This variability can par-

tially be addressed by normative modeling [18], where the aim is to map the full range of nor-

mal variation within the population and quantify statistical deviations of individual patients.

Different normative modeling approaches have recently been applied to neuroimaging data to

study disorders such as schizophrenia [19–21], dementia [22,23] and autism [20,24]. The
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methods have shown significant promise in providing predictions of disease states at the level

of individual subjects.

In this study, we compare source-level power spectra computed from resting-state MEG

recordings of mTBI patients and their healthy controls to a large normative reference dataset

for the purpose of modeling the pathological features of individual mTBI patients as extreme

values or deviations with respect to the normal variation. To discriminate the group of mTBI

patients from healthy control subjects, we train a support vector machine (SVM) classifier [25]

on the resulting quantitative deviation maps.

A key question in normative modeling is the choice of the reference cohort, which should

capture a wide range of variation in the population [26]. An important consideration is there-

fore the matching of the demographics of the normative reference data to the subject. As there

is significant neurophysiological variation across demographic groups, interesting disease-

related effects may be diluted if the applied normative data represents the whole population.

Here, we explore this question by comparing the results obtained with age-matched and non-

matched normative data.

Methods

Datasets

We employed a dataset originally measured by Kaltiainen and colleagues [27,28], comprising

resting-state MEG recordings from 25 mild traumatic injury patients and 20 healthy controls.

In addition, we employed a large, separate dataset, utilizing MEG recordings from a total of

621 healthy participants [29] as normative data.

Ethics statement

The study was approved by the Ethics Committee of Helsinki and Uusimaa Hospital District.

Written consent was obtained from the participants in accordance with the Declaration of

Helsinki.

mTBI patients and healthy controls

The patient group consisted of 25 mild traumatic brain injury patients (11 females, 14 males)

with a mean age of 42 years (range 20–59 years). The control group comprised 20 healthy sub-

jects (8 females, 12 males) with a mean age of 39 years (range 19–58 years). All patients and

controls were without neuropsychological disorders, medication affecting the central nervous

system, substance abuse or earlier history of TBI. The patients’ level of consciousness was

assessed with the Glasgow Coma Scale (GCS) [30] shortly after the injury. GCS addresses the

level of consciousness, ranging from three (deep unconsciousness) to 15 (alert and awake).

The GCS scores varied between 14 and 15, thus fulfilling the criteria for mTBI. All patients

maintained TBI symptoms at their first MEG measurement. At their MEG measurement ses-

sions, the patients filled in the Rivermead Post-Concussion Symptoms Questionnaire (RPQ)

[31], which measures the severity of post-concussive symptoms after TBI with a five-step scale,

compared with the situation before the accident. The maximum score is 64 but answering “no

more of a problem as before the accident” yields one point. The scores of the questionnaire

varied from 3 to 36 with an average of 17.2. The demographics of the patient group, as well as

their GCS and RPQ scores, are presented in Table 1. All patients fulfilled the criteria for mTBI

according to the American Congress of Rehabilitation Medicine (ACRM) criteria [32] with

loss of consciousness of less than 30 minutes at the time of the accident, GCS varying between

13–15 at 30 min after the accident and the duration of post-traumatic amnesia less than 24h.
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All patients underwent an MEG measurement within 6 months (26 weeks) after the trauma,

19 of which were performed at the subacute stage within 2 months (9 weeks) of the injury.

Nine patients underwent a follow-up comprising of both a MEG recording and neuropsycho-

logical testing at 6 months after the first recording [28]. The follow-up recordings were not

analyzed in the current study due to the small group size. The MEG measurements were per-

formed at Aalto Neuroimaging MEG Core, Aalto University School of Science, Espoo, Fin-

land, using a 306-channel whole-head MEG device (Elekta Neuromag; MEGIN Oy, Helsinki,

Finland). During the recordings, data were filtered to 0.03–330 Hz and sampled at 1000 Hz.

Electrocardiogram and horizontal and vertical electro-oculograms were measured for manag-

ing artifacts caused by heartbeat and eye movement, respectively. Here, from those recordings,

we use one MEG session where the subjects rested with eyes closed for 10 minutes. The sub-

jects were instructed to sit relaxed and avoid movement. The measurement was briefly paused

twice to confirm that the subjects remained awake and alert.

Table 1. Demographics of the mTBI patients.

Patienta Age (years) GCS RPQ Delay (weeks)b Lesionsc

1 43 15 3 17 –

2 50 15 3 9 +

3 42 14 24 22 +

4 46 14 29 20 +

5 37 14 13 15 +

6 32 15 18 17 +

7 59 15 3 3 +

8 54 15 8 9 –

9 39 15 31 9 –

10 20 14 2 4 +

11 44 14 27 7 +

12 43 14 28 26 –

13 36 14 25 7 +

14 39 15 9 3 –

15 29 14 3 4 –

16 37 14 25 4 +

17 50 14 6 9 +

18 28 15 16 1 –

19 29 14 3 3 +

20 59 14 36 1 +

21 53 14 34 3 +

22 51 15 14 1 –

23 23 15 25 1 –

24 40 14 14 4 +

25 56 15 32 3 –

Average 41.6 14.4 17.2 8.0 60%

aThe data were obtained from Kaltiainen and colleagues [27,28]. The patients are in the same order as in Table 1 of Kaltiainen et al. [28].
bThe time between the injury and the MEG measurement. Times expressed in months were converted to weeks using a factor of 4.345 (the average number of weeks in a

month).
cLesions observed in comprehensive MRIs.

GCS–Glasgow Coma Scale score; RPQ–Rivermead Post-Concussion Symptoms Questionnaire.

https://doi.org/10.1371/journal.pcbi.1011613.t001
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Anatomical MRI images (Signa HDX 1.5 T, General Electric, Milwaukee, WI, USA) were

acquired from all subjects. MRIs from patients were acquired within one week to 16 months

after the injury. Trauma lesions were detected in 15 of the 25 (60%) patients (see Table 1).

Normative dataset

A large open neuroimaging dataset by the Cambridge Centre for Ageing and Neuroscience

(Cam-CAN) [29], containing MEG and MRI measurements of nearly 700 healthy participants

aged 18 to 87, was used for creating the normative reference data. The curated, cross-sectional

Cam-CAN dataset contains measurements from approximately 50 men and 50 women in each

age decade (18–27, 28–37, 38–47, 48–57, 58–67, 68–77 and 78–87 years). In this study, only

the resting-state, eyes-closed MEG and anatomical MRI were used. Further details of the data-

set are presented by Taylor and colleagues [29].

Subjects with missing or incomplete resting-state MEG measurements or T1-weighted MRI

images were excluded from the analyses, resulting in a set of 621 subjects. The number of sub-

jects in each age group was 56, 92, 104, 93, 95, 102 and 79, from the youngest to oldest.

Data preprocessing

Artifact removal and data segmentation. The temporal extension of the signal space sep-

aration (tSSS) [33] method implemented in the MaxFilter software package (MEGIN Oy) was

used for reducing external artifacts in the MEG data. To suppress artifacts caused by cardiac

activity and eye movement, independent component analysis (ICA) [34] was used for identify-

ing components most prominently related to the aforementioned sources. In most cases, 1–2

components were removed, but for some subjects three or even four components were

removed based on manual inspection of the spatial patterns and time courses of the compo-

nents. The FastICA algorithm available in MNE-Python software [35] was used for the ICA

processing.

Data segmentation was applied on the samples by means of a sliding window with a length

of 200 seconds and stride of 50 seconds. This resulted in seven time series for each subject and

a total sample size of 315 data points.

Source modeling. An automated source-modeling pipeline was applied on the measure-

ments to compute power spectral densities (PSDs) at each cortical location using the MNE-Py-

thon software [36].

Reconstruction of each subject’s cortical surface was performed using the FreeSurfer soft-

ware [37,38] from T1-weighted anatomical MRI images. For the forward computation, a sur-

face-based source space with the ico-4 decimation was created, resulting in a set of 5124

cortical locations at which the amplitudes of the current dipoles were estimated. A single-com-

partment BEM head model was formed based on brain surface tessellations obtained by the

FreeSurfer watershed algorithm [39]. The coregistration of the MEG and MRI coordinate

frames was performed automatically using MNE-Python and fiducial points calculated using

the FieldTrip [40] toolbox in MATLAB.

For the calculation of the inverse operator, noise covariance matrices were computed from

recordings without a subject (“empty-room recording”) performed during the same measure-

ment session. The ICA solutions computed for each subject’s recording were applied also to

these empty-room recordings. The noise covariance matrix and the forward solution were

used to compute the dSPM inverse solution, which was applied to the complex-valued

8192-point Fourier transform of the Hann-windowed (50% overlap) raw data over a frequency

range of 1–40 Hz. A source-level PSD was obtained by taking the magnitude of the estimate at

each source point, yielding a matrix X of size 5124 (number of source locations) × 319 (number
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of frequency values). Finally, the subject-specific cortical PSDs were morphed to a reference

brain (the “fsaverage” brain provided by FreeSurfer) to enable comparison of the power spec-

tra across subjects (see Fig 1A).
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Fig 1. Analysis pipeline. (A) Data preprocessing. Source-level power spectra were first calculated for each cortical

region and morphed to a common brain template. (B) Construction of normative models. The mean μ and standard

deviation σ were calculated across subjects within the reference dataset to obtain normative data for each location and

frequency. Three different types of normative models were constructed: a full normative model containing all

participants from the reference dataset across the entire age range (depicted in blue, mean values across all frequencies

and cortical locations are shown), age-matched models containing a subset of participants within the same age range as

the patient/control (exemplar depicted in green), and for comparison a random model with a subset of reference data

of random ages (shown in red). (C) Classification procedure. The normative models were used for converting the

power spectra of the patients and controls into deviation scores (z-scores). The deviation scores, binned into 448

cortical parcels and six frequency bands, were then entered into the classification procedure.

https://doi.org/10.1371/journal.pcbi.1011613.g001
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Feature engineering. To obtain normative models, the mean μ and standard deviation σ of

the power spectra were calculated across the subjects from the normative dataset (Fig 1B).

These statistics were then used for converting the power spectrum matrices for the patients and

their healthy controls, into deviations maps of Z-scores over the entire cortex, calculated as

Z ¼
X � m
s;

½1�

where X 2 R5124×319 is the power spectrum of an individual subject.

In addition, data binning was performed both over the spatial and the frequency dimensions

to reduce dimensionality. The brain sources were automatically grouped together according to

an anatomical parcellation scheme with 448 cortical regions [41], where the activity of a cortical

region was represented by the mean power of the source points within that region (see Fig 1C).

In the frequency dimension, six frequency bands were defined: delta (1–4 Hz), theta (4–8

Hz), alpha (8–13 Hz), low beta (13–17 Hz), high beta (17–30 Hz), and gamma (30–40 Hz). The

average was taken over the power values corresponding to each frequency interval. Binning

the data into cortical parcels and into canonical frequency bands significantly reduced the

dimensionality of the data: the resulting power spectra of size 448×6 were only 0.16% the size

of the original data. Finally, the deviation matrices were flattened into feature vectors contain-

ing the six frequency features for each cortical region, resulting in 2688 features per subject.

Model training and validation

A support vector machine with a radial basis-function kernel was selected for classifying the

measurements of mTBI patients and controls due to its ability to perform well in high-dimen-

sional settings, even when the size of the dataset is smaller than the number of features [42].

A nested cross-validation strategy was selected for evaluating model performance. In the

inner 5-fold cross-validation loop, the best values for the regularization hyperparameters C

and γ were chosen based on the best average accuracy across the folds. In the outer 7-fold loop,

the model was re-trained using the chosen hyperparameters and evaluated using the indepen-

dent validation set of the fold. To reduce possible bias of a single cross-validation split, the

nested procedure was repeated 5 times with a different split each round, resulting in a total of

35 folds in the outer loop. The splits were stratified by the target labels.

The hyperparameter values tested in the inner cross-validation loop were 1, 5 and 10 for C

and 0.1, 0.01 and 0.001 for γ. The penalty parameter C was weighted inversely proportional to

class frequencies to avoid bias towards the positive class (patients) which had a small majority.

The data were centered by subtracting the median and scaled to the range between the 1st

and 3rd quartile of the data. The median and the interquartile range were calculated from the

training data at each cross-validation fold and applied to both training and testing data before

fitting and evaluating the model.

The employed data segmentation approach resulted in multiple samples corresponding to

the same subject, which leads to the samples being dependent. To avoid leaking information,

the cross-validation splits were constructed so that the samples of any single subject were

included only in the training or only in the validation set, but never both. The predicted class

label for each subject, positive (patient) or negative (control), was determined by the label

given to the majority of samples from that subject.

To test the effect of using normative data from a specific age group, the model was trained

and evaluated on an age-matched subset of the normative data, i.e., only the power spectra

belonging to the same age decade as the subject were used. The age groups were defined

according to the normative dataset as 18–27, 28–37, 38–47, 48–57 and 58–67 years. To ensure
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that the possible difference in the results was not due to the smaller size of the normative data-

set, the model was also evaluated on a dataset where the normative data used for each subject

were randomly subsampled so that the size of the normative dataset was equal to the number

of normative samples in the subject’s age group. The results of the randomized procedure were

averaged over three repetitions to reduce the effect of a single random sampling.

In addition to the above three ways of employing the large normative dataset, we trained

and evaluated the model on a dataset where the features were created from only the power

spectra of the mTBI patients and their healthy controls, applying the same binning scheme as

described earlier but without computing the Z-scores using normative data. This was done to

assess the performance of the proposed normative modeling approach compared to classifying

the power spectra as such.

The statistical significance of the results was explored using permutation tests, where the

model was cross-validated 1000 times with randomly permuted group labels for subjects. A p-

value < 0.05 was considered significant.

Estimating feature significance

After verifying the predictive capabilities of the model, permutation feature importance [43]

was used for estimating how much the model relies on each individual feature for aiding the

classification. The method is defined as the decrease in prediction performance (in this case,

accuracy) when the values of the feature are randomly permuted while keeping other features

intact. When calculating the permutation feature importance, correlated features may lead to

artificially low features importance. We expected that many of the features within the dataset

would be highly correlated: for example, the alpha-band power values in two neighbouring

regions are probably very similar. To reduce multicollinearity of the features, the number of

features was reduced with a hierarchical clustering approach, where the Spearman rank corre-

lations between features were clustered using Ward’s method. A threshold of 2 was manually

selected to form the clusters, the first feature of each cluster was picked, and the resulting set of

features was used to train the model with the cross-validation approach described before. The

selection of features to be removed was performed only on the training data of each fold to

avoid leaking information to the test set. The permutation importance was calculated on the

test data of each fold for 5 permutations within each fold and averaged across folds.

Correlation of patient demographics and classification

To evaluate the effects of the timing of the MEG recording with respect to injury and the RPQ

score on the classifier’s performance (Table 1) we report these values for each patient that was

incorrectly classified. In addition, we used a Mann Whitney U-test to assess whether the deci-

sion function scores differed significantly between patients with and without visible trauma

lesions in their MRIs. The average decision function values of each patient were calculated

over the five repeats of the 7-fold cross validation. The decision function values are propor-

tional to the distance of the samples from the hyperplane separating the classes, and so they are

indicators of the classifier’s confidence regarding a particular sample. The predicted class cor-

responds to the sign of the decision function output.

Results

Deviation scores

Fig 2A shows the average deviation scores for the patient and control groups after binning the

data in the spatial dimension. The patient group shows higher average activation compared to
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the normative dataset, mainly around 10 and 20 Hz as well as at frequencies over 30 Hz. The

deviation values for the control subjects are overall slightly lower compared to the normative

dataset, which might be an effect of different measurement sites.

Classification performance

The mean and standard deviation of the accuracy, sensitivity, and specificity across the cross-

validation folds are reported in Table 2 for the three different approaches that were used for
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Fig 2. (A) Group-average, relative power spectra of mTBI patients and healthy controls. Horizontal axis is

frequency (Hz), vertical axis the cortical location (indices of the 448 cortical regions ordered alphabetically), and the

color indicates the Z-score with respect to the normative data at that frequency and cortical location. (B) Relative

power spectra associated with different classification results. The average Z-score maps for patients (first row) and

controls (second row) by classification output, from left to right: correctly classified samples, incorrectly classified

samples and the difference between the correctly and incorrectly classified samples.

https://doi.org/10.1371/journal.pcbi.1011613.g002
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selecting the normative data (using the whole normative dataset, an age-group-matched sub-

set, or a random subset of the same size as the age-matched set), as well as for the results

obtained without using normative data.

The largest accuracy (0.790) was achieved by using all available normative data. Using age-

matched normative data yielded slightly lower results: the accuracy was 0.761 with feature

selection by clustering. When comparing the results using age-matched normative data to a

random sample of normative data of the same size, the randomly selected normative data

yielded a notably lower accuracy of 0.711. Classification without the use of normative data

yielded an accuracy of 0.786, which is only marginally lower than the highest value obtained.

Permutation tests indicated that the accuracy of the classifier was significantly higher than

chance level at p< 0.05 for all classification tasks.

In all cases the classifier had a high sensitivity, with the largest value (0.914) obtained for

the random normative dataset. The specificity of the classifier was notably lower, at most 0.638

with full normative data. Using age-matched normative data yielded a decrease in sensitivity

and an increase in specificity when compared to a random selection of normative data.

Model interpretation

To gain insight to the decision function of the classifier, averaged spectral Z-score maps of

both patients and controls were plotted for correctly and incorrectly classified subjects

together with their difference; see Fig 2B. In this analysis, the correct vs. incorrect classification

was based on the best performing model, which used all available normative data without age-

group matching.

Similarly to the observations from Fig 2A, the correctly classified patients seem to be char-

acterized by larger Z-scores around the alpha (*10 Hz) and beta (*20 Hz) frequencies and

also in the high end of the spectrum–the gamma band. Higher activation can also be seen in

the slower waves of the theta band. The mTBI patients incorrectly classified as controls appear

to be lacking these features at least at the group level, which is likely the reason for their mis-

classification. For the control group, the most notable difference between the correct and

incorrect classifications is in the 10-Hz frequency band, which shows higher values for the

false positives. The difference plots show that the values of the correctly classified patients are

overall slightly higher than those of the incorrectly classified patients, while the inverse is true

for the controls.

Fig 3A shows the permutation importance of the features selected by the hierarchical clus-

tering method. Only 30 features with the largest mean importance are shown. A clear majority

of the most significant features correspond to the theta frequency band. The list also includes a

few features from the alpha, delta and low beta frequency bands. Cortical areas prominently

present among the most important features are mostly located in the parietal lobe, such as the

supramarginal gyrus, postcentral gyrus, superior and inferior parietal lobule and precuneus.

Table 2. Classification of mTBI patients and healthy controls.

Normative data Accuracya Sensitivitya Specificitya

Full 0.790 (±0.154) 0.912 (±0.176) 0.638 (±0.277)

Age-matched 0.761 (±0.150) 0.907 (±0.166) 0.581 (±0.277)

Random 0.711 (±0.153) 0.914 (±0.154) 0.467 (±0.318)

None 0.786 (±0.162) 0.912 (±0.154) 0.629 (±0.293)

aThe average (± standard deviation) accuracy, sensitivity and specificity over a 5×7-fold repeated nested cross-validation with hierarchical clustering of correlated

features.

https://doi.org/10.1371/journal.pcbi.1011613.t002
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Other featured areas include the precentral gyrus in the posterior frontal lobe and the middle

and inferior temporal cortex in the temporal lobe.

The mean values of the estimated feature importance for the theta and alpha bands are visu-

alized superimposed on the cortical surface in Fig 3B. In line with the results in Fig 3A, the

most significant features are concentrated in the parietal lobe while there are also some in the

temporal and occipital lobes and in parts of the frontal lobe.

To further assess the reliability of the results, the Z-score map of each patient was visually

compared to the findings of Kaltiainen and colleagues [27]. In that study, theta band activity
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the permutation feature importance.

https://doi.org/10.1371/journal.pcbi.1011613.g003
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exceeding two standard deviations from the healthy subjects’ average was found in seven of

the 26 mTBI patients, 25 of which were also analyzed in the current study where the Z-maps

(computed with the full normative dataset) revealed such aberrant low-frequency activity in

eight patients, five of which were the same as the ones identified in that earlier study. With

age-matched normative data, the abnormality was found in one additional patient. Represen-

tative examples of the Z-score maps of patients with abnormal theta activity are shown in Fig

4. As seen in the figure, the locations of this abnormal low-frequency activity are highly

variable.

The eight patients with abnormal theta activity (or nine in the age-matched case) were clas-

sified by the model with an accuracy of 0.950 (age-matched: 0.911). On the other hand, a simi-

lar increase of the theta frequency band was observed in three out of the 20 healthy controls

with non-matched data and in four with age-matched data. These subjects were classified

incorrectly as patients without exception.

Overall, patients were classified correctly with high sensitivity: with the full normative

model, only two patients were consistently misclassified (Patients 1 and 5 in Table 2). Both of

these patients were measured relatively late with respect to the time of injury (4 and 3.5

months, respectively), and had RPQ scores below the average of the patient cohort (3 and 13,

respectively). In the two misclassified patients, the earlier study identified abnormal oscillatory

activity over frontal areas in the gamma and theta frequency range [27]. One of these patients

had a lesion in their MRI; however, the lesion was deep in the brain and not associated with

low-frequency activity in the earlier study [27]. There was no significant difference in the
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Fig 4. Deviation score maps for theta-band power in four patients. The color indicates the Z-score with respect to

the level of 4–8-Hz activity in the full normative data.

https://doi.org/10.1371/journal.pcbi.1011613.g004
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decision function output between those patients who had a lesion in their MRI and those who

did not (p = 0.52, Mann Whitney U-test).

Discussion

Classification accuracy and significant features

Finding objective diagnostic biomarkers for mTBI is challenging due to the high variability

and nonspecificity of posttraumatic symptoms. Combining measurements of brain electric

activity with machine learning could aid in identification of mTBI, and thus help clinical deci-

sion making. Here we show that mTBI patients can be separated from healthy controls with

79.0% accuracy using quantified deviations from normative power spectra combined with

supervised machine learning. Activity in the theta frequency band (4–8 Hz) provided the most

significant discriminative features for the classification, with additional contributions from the

delta, alpha and low beta frequencies. Increased neural oscillatory activity below 8 Hz, previ-

ously associated with axonal injury [44], is the most frequent finding in mTBI patients even in

the chronic stage of the injury [4,5,10,44–47]. The obtained results are thus in line with previ-

ous literature.

Considering that 10 out of 25 mTBI patients did not have any structural lesions visible in

MRI scans and that more than half of the MEG recordings were conducted over a month post-

injury, the achieved accuracy can be regarded as satisfactory. Furthermore, it is likely that the

patient group includes subjects whose brain activity and function could be considered normal

by all relevant metrics despite the earlier trauma, so achieving an accuracy close to 100% may

be an unrealistic goal.

Recent studies utilizing machine learning combined with MEG or EEG data to predict

mTBI at the subacute or chronic stage have yielded promising results. The accuracy of the

methods presented in this paper slightly exceed the accuracy reported by Cao and colleagues

[48], where 61 subjects were classified with a 77.1% accuracy using task-related EEG measure-

ments, and those by Lewine and colleagues [12] who achieved a 75% accuracy in classifying

153 subjects using five global features calculated from resting-state EEG data. It is notable that

we reach a comparable accuracy with only 45 subjects compared to 61 and 153 subjects in

these earlier studies, respectively. In a recent MEG study, Huang and colleagues [13] reached a

sensitivity of 95.5% and a specificity of 90% in pediatric mTBI when combining delta and

gamma band spectral features. Importantly, Aaltonen and colleagues [14] also demonstrated

that several common classifiers applied to power spectral features derived from MEG data pro-

duce corresponding results on two different patient cohorts, recorded at two different sites.

Taken together, these studies show that power spectral features derived from MEG or EEG

data can provide a neural signature of brain injury that can differentiate between mTBI

patients and control subjects. The current approach that employs features quantifying the

deviation from a normative sample yields a more interpretable result compared to typical

machine-learning models, which is a significant advantage over previous models, despite its

lower accuracy in some cases. The approach can be further extended to measures derived from

functional connectivity that have proven sensitive in identifying patients with mTBI, reaching

in some cases over 90% classification accuracy [11,15,16,49].

Signal features within the theta frequency band contributed significantly to the classifica-

tion accuracy. The low-frequency abnormalities were also a major finding for the current data-

set in the original study [27]. Interestingly, features from the alpha, beta and gamma frequency

bands were not among the most significant features, even though these bands showed visible

differences between patients and controls at the group level. Previously, Zhang and colleagues

detected reduced beta power in frontotemporal regions [50], but for changes in alpha and

PLOS COMPUTATIONAL BIOLOGY Using normative modeling for detecting mild traumatic brain injury from MEG data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011613 November 9, 2023 13 / 19

https://doi.org/10.1371/journal.pcbi.1011613


gamma oscillatory power after mTBI, the reports of alterations in neural oscillatory power are

contradictory [11,45,51,52]. A possible explanation for the lack of significant features is that

there is large physiological variability in these frequency bands between and even within indi-

viduals e.g. according to their vigilance and attention. Another explanation might be the out-

lier values in these bands that affect the average but do not contain valuable information for

the training of the SVM classifier, as the decision boundary of the SVM is robust to outliers.

While this and many other studies have detected abnormalities in spectral features in the

lower frequency bands related to mTBI with high sensitivity, such deviations from the normal

range can occur also from other causes (ie. the deviations are not specific to mTBI). Focusing

on a single aspect, such as theta frequency abnormalities, may thus be too limiting for the high-

est classification accuracy.

The most significant features of the theta frequency band were found to be located in the

parietal, temporal and occipital regions of the brain, whereas the most significant features

from the delta, alpha and beta band were detected in parietal and the Rolandic cortex. The pau-

city of frontal features is notable, however, since frontobasal areas are among the most fre-

quent lesion sites after mTBI [53,54]. The locations generating mTBI-related low-frequency

activity are typically highly variable [46], and likely to be influenced by the location of the

impact to the head. This spatial variance was confirmed with visual inspection of the individual

Z-score maps presented here. This heterogeneity highlights the need to focus on individual-

level abnormalities rather than a “typical mTBI patient”, as in a traditional case-control

paradigm.

Normative modeling: Advantages and considerations

Interpretability of machine-learning models in a medical context is important due to safety

and ethical concerns: clinicians should be able to identify possible errors in the model’s predic-

tions [55]. Normative modeling, an intuitive approach familiar from children’s growth charts,

together with a supervised classifier has the potential to help place confidence in the model’s

predictions and detect possible errors. In addition to the prediction of the model, the decisions

can be aided with visualizations of the patients’ individual cortical Z-score maps, possibly lim-

ited to the theta frequency band.

Many of the earlier studies utilizing a normative modeling approach have relied on Gauss-

ian process regression [56] for modeling the healthy variation [18,21,24], which has the benefit

of quantifying the uncertainty of the model. The method could be explored in the context of

our proposed approach in future research. In this study, a relatively simple and straightforward

calculation of Z-scores was adapted, as robust statistical inference was not of concern: the nor-

mative modeling provided features for supervised machine learning rather than being directly

used for discriminating patients from controls. A larger normative dataset of thousands of

measurements might also enable the use of state-of-the-art deep learning methods for building

the normative model, such as deep autoencoders as in Pinaya and colleagues [20,22], which

have performed well in complex tasks but require a large number of samples to learn

effectively.

The deviation values for our control subjects were slightly below zero, probably reflecting

technical differences in the MEG recording sites. To alleviate these effects, multi-site calibra-

tion approaches that have been developed for normative modeling of MRI data could be

adapted to MEG data as well [57]. Here, since the same normative model was applied to both

patient and control data, we do not expect the effect on the classification results to be notable.

As neurophysiological patterns vary significantly with age, patients should be compared to

their own age group in normative comparisons [58]. In this study, selecting the normative data
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by each subject’s own age group for calculating the Z-score maps yielded better results com-

pared to using an equally sized random sample of normative data. This suggests that true

abnormalities are indeed more reliably identified if a subject is compared with their own age

group: selecting the normative data by age may lead to better detection of phenomena normal

for some age groups but possibly pathological for others. However, the highest accuracy was

achieved by using all available normative data, which suggests that a sufficiently large norma-

tive dataset is needed to capture enough individual variation. A normative database integrated

with a future clinical application should thus ideally aggregate thousands of M/EEG measure-

ments of healthy subjects across different studies, sites and demographic variables to enable

selecting a sufficiently sized subset of normative data with suitable properties for each task.

The current study demonstrates the feasibility of employing a normative modeling

approach applied to MEG data to identify patients with mTBI. Further studies should be con-

ducted using a larger clinical dataset. Large functional imaging datasets from clinical popula-

tions are, however, rarely available, and drawing reliable conclusions about classification

results is often hindered by the small size of the datasets. In this study, the effect of the dataset

size was most clearly seen in the large standard deviations of the accuracy, sensitivity and spec-

ificity scores, which ranged from 0.15 to 0.32. Larger clinical datasets would increase the

robustness of the predictions and identification of the most significant features but collecting

such large-scale patient data remains a challenge.

One limiting factor in translating research on candidate biomarkers for detecting mTBI

from MEG data to clinical settings are the sometimes complex analysis pipelines, which may

be time-consuming or require extensive expertise. Here, the analysis was automated with the

exception of artefact removal, which required manual inspection of the ICA components

selected for removal. Using novel automated artefact removal algorithms that utilize machine-

learning algorithms [59–61] could help clean the data further and provide a fully automated

analysis pipeline.

We employed an SVM classifier, as they typically perform well on data with high

dimensionality [42]. The nonlinearity of the SVM classifier does, however, introduce some

limitations to the interpretability of the results, as the weights of the individual features are not

directly interpretable. Importantly, the results of such methods should not be thought of as

revealing exactly the location and frequency of the most discriminative features, but as giving a

general sense about brain activation patterns associated with mTBI.

Conclusions

We introduced a normative-modeling and machine-learning approach capable of discriminating

mild traumatic brain injury patients from healthy controls with up to 79.0% accuracy. Most of the

features that were significant for the classification corresponded to the theta frequency band, the

excess activity of which has been associated with pathological phenomena, including mTBI, in

earlier studies. The approach could help differentiate mTBI-type symptoms in patients who

exhibit prolonged symptoms suggestive of TBI and/or problems with vocational performance.

The approach could also help detect patients in need of a neuropsychological intervention.

We demonstrated how normative modeling enables an intuitive interpretation of the pre-

dictions of the classifier even at the level of individual patients, a framework that could be recy-

cled for other clinical diagnostic needs. This framework would enable building a system

where, for example, a brain scan of an individual patient could be automatically checked for

different pathological patterns against a large normative database. The present study acts as an

example use case for such a system, with a preprocessing and classification pipeline that can be

made fully automatic from the raw measurement data to the final results.
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