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� Functional connectivity estimates and graph metrics based on source EEG depend on electrode density.
� Compared to high-density, low-density EEG gives skewed graph metric estimation.
� The reproducibility of graph metrics across electrode densities depends on the inverse solution.
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Objective: Using EEG to characterise functional brain networks through graph theory has gained signifi-
cant interest in clinical and basic research. However, the minimal requirements for reliable measures
remain largely unaddressed. Here, we examined functional connectivity estimates and graph theory met-
rics obtained from EEG with varying electrode densities.
Methods: EEG was recorded with 128 electrodes in 33 participants. The high-density EEG data were sub-
sequently subsampled into three sparser montages (64, 32, and 19 electrodes). Four inverse solutions,
four measures of functional connectivity, and five graph theory metrics were tested.
Results: The correlation between the results obtained with 128-electrode and the subsampled montages
decreased as a function of the number of electrodes. As a result of decreased electrode density, the net-
work metrics became skewed: mean network strength and clustering coefficient were overestimated,
while characteristic path length was underestimated.
Conclusions: Several graph theory metrics were altered when electrode density was reduced. Our results
suggest that, for optimal balance between resource demand and result precision, a minimum of 64 elec-
trodes should be utilised when graph theory metrics are used to characterise functional brain networks in
source-reconstructed EEG data.
Significance: Characterisation of functional brain networks derived from low-density EEG warrants care-
ful consideration.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.clinph.2023.03.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.clinph.2023.03.002
http://creativecommons.org/licenses/by/4.0/
mailto:chr.hh@protonmail.com
https://doi.org/10.1016/j.clinph.2023.03.002
http://www.sciencedirect.com/science/journal/13882457
http://www.elsevier.com/locate/clinph


C. Hatlestad-Hall, R. Bruña, M. Liljeström et al. Clinical Neurophysiology 150 (2023) 1–16
1. Introduction

For nearly a century, the electroencephalogram (EEG) has held
an undisputed position in clinical neurological diagnostics. Facili-
tated by the advent of accessible high-performance computers
over the past two decades, the field faces a paradigm shift from
the expert visual analysis and classification of well-characterised
signal compounds into automated interpretation of complex,
large-scale temporal and spatial signal dynamics. Among the most
promising approaches are methods for capturing functional brain
connectivity, i.e., the interactions over time between spatially sep-
arated modules in the brain (Rossini et al., 2019; van Diessen et al.,
2015). From the EEG signals, we can extract statistical dependen-
cies between brain regions independent of the anatomical connec-
tions between them. Through functional connectivity, brain
networks at various scales may be modelled with the application
of graph theoretical concepts (Rubinov and Sporns, 2010). Such
approaches have already gained clinical interest, including locali-
sation of the seizure onset zone in epilepsy (Baroumand et al.,
2021) and as a biomarker for cognitive changes in various neuro-
logical diseases (Hassan et al., 2017; Hatlestad-Hall et al., 2021a;
Rodríguez-Cruces et al., 2020; Vlooswijk et al., 2011). However,
the methodological complexity and required computational power
of these approaches make their current use in clinical neurology
scarce.

The main advantage of EEG lies in its ability to represent electri-
cal activity from the brain on a millisecond scale. However, EEG is
limited in its spatial resolution: Firstly, the electrical potentials
recorded from scalp-located electrodes reflect neuronal signal
transmission mainly in the pyramidal neurons of the cortex
(Cohen, 2017); and secondly, the current flow between the signal
source and the electrode is filtered through the different tissues
of the head, i.e., the signals are altered and mixed by the volume
conduction effect (Brunner et al., 2016). While reports suggest that
subcortical brain structures may also contribute to the EEG signal
(Seeber et al., 2019), its sensitivity to the latter remains a persistent
caveat of EEG. To mitigate this effect, source reconstruction, i.e., the
estimation of source-space signals given the individual’s head
anatomy (Hassan and Wendling, 2018; Michel et al., 2004;
Schoffelen and Gross, 2009), is warranted. In this regard, it is
important to note that the anatomies of both the human brain
(e.g., convolution, grey/white matter distribution) and the skull
(e.g., thickness, curvature) have profound individual variation. As
a consequence, scalp EEG signals are essentially passed through
an individual mixing and attenuating filter. Thus, while anatomical
templates may sometimes be used, individual anatomical images
obtained with magnetic resonance imaging (MRI) or computerised
tomography (CT), can greatly enhance the source reconstruction by
introducing individualised information about tissue distribution
(Céspedes-Villar et al., 2020; Douw et al., 2018).

Electrophysiological source reconstruction relies on solving the
inverse problem of localising the generators of the measured sig-
nals. This problem is ill-posed, as it requires applying a set of addi-
tional constraints to yield a unique solution, including restricting
the solution to physiologically plausible sources (e.g., cortical grey
matter), presuming a set of independent, uncorrelated sources
(used, e.g., in beamformer solutions), and discarding solutions that
require an excessive amount of energy (e.g., minimum norm esti-
mates). The inverse solution algorithms can broadly be categorised
into those based on localised (current dipoles) or distributed
sources (Michel and Brunet, 2019). The former model is based on
the a priori assumption that a limited number of rather focal brain
sites generate the electrical potential measured at the scalp, and it
is typically used, e.g., for modelling responses in sensory brain
regions where the number of activated, point-like sources can be
2

assumed to be limited. In contrast, the distributed source models
assume superficial, distributed current estimates, and are used,
e.g., in the present work with little a priori information of the acti-
vated sites. For a comprehensive review on source reconstruction
methods, the reader is referred to, e.g., He et al. (2018). As con-
straints and assumptions regarding the underlying sources vary
amongst inverse solution approaches, it is crucial to understand
the effect of the chosen source reconstruction method on estimates
of functional connectivity.

Antecedent to the importance of selecting an appropriate math-
ematical approach for the source reconstruction process are
parameters inherent to the raw scalp EEG data. Among these,
and perhaps the most challenging to accommodate in clinical set-
tings, is the spatial coverage of the EEG recording (i.e., the number
and spatial distribution of electrodes). Importantly, reports from
both empirical (Lantz et al., 2003) and simulated (Song et al.,
2015) EEG data suggest that source localisation is considerably
enhanced by employing dense electrode arrays. However, we know
relatively little about how the electrode density affects estimates
of source-space functional connectivity and subsequently derived
graph theory metrics, and whether the potential effect depends
on the employed source reconstruction technique or functional
connectivity measure. These are important issues, considering
the increasing use of graph theory concepts, such as the small
world index (Bassett and Bullmore, 2017), in describing functional
brain networks in various applications. Furthermore, for modern
analysis methods to be implemented in clinical neurology, we
must find the optimal balance between high-quality research and
realistic clinical practice. Most clinics are incapable of conducting
high-density EEG due to the time and resources required.

Here, we investigated the effect of electrode density on different
functional connectivity and graph theory-based metrics while
employing various source reconstruction methods. Specifically,
we aimed to establish if sparse and clinically feasible electrode
montages (64, 32 and 19 electrodes) can replicate the results
obtained with a high-density 128-electrode montage without a
significant loss of information. We calculated functional connectiv-
ity in source-space, based both on phase (phase-locking value, PLV;
Bruña et al., 2018; Lachaux et al., 1999) and amplitude (amplitude
envelope correlation, AEC; Brookes et al., 2011a; Hipp et al., 2012),
for the different electrode densities. From the resulting functional
connectivity matrices, we calculated several frequently reported
graph theory metrics and examined whether they differed
between the outlined methodological scenarios. Our principal
hypothesis was that the investigated metrics would demonstrate
instability dependent on the sparseness of the electrodes. Yet,
the effects were expected to be qualitatively similar across individ-
uals, resulting in relatively strong correlations between the graph
metrics derived from the different electrode montages.

2. Methods

2.1. EEG data and spatial subsampling

An EEG dataset comprising 33 participants (mean age: 55.7 ± 5.
9 years; 57.6% female; 87.9% right-handed) was analysed in the
present study. The participants comprised both chronic phase focal
epilepsy patients and healthy controls; the sample is detailed in
previous reports (Hatlestad-Hall et al., 2021a, 2021b). The data
were originally recorded with 128 electrodes organised in a radial
positional scheme during five minutes of wakeful resting using a
BioSemi ActiveTwo system (sampling frequency: 2048 Hz). The
data preprocessing included re-referencing to an average signal,
resampling to 512 Hz, removal of channels with high levels of
noise and independent components related to ocular or muscular
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activity, band-pass filtering (1–45 Hz), and visual inspection of the
cleaned four-seconds non-overlapping data segments. The proce-
dures are detailed in Hatlestad-Hall et al. (2021b). To enhance
the accuracy of the subsequent source reconstruction (Homölle
and Oostenveld, 2019), individual electrode positions were
obtained with a Structure Sensor 3D scanner (Occipital Inc., Boul-
der, CA). The preprocessed 128-channel data were then subsam-
pled into lower-density montages by extracting the electrodes
from the original montage approximately corresponding to the
standard 10–10 and 10–20 montages (Oostenveld and Praamstra,
2001) for 64, 32 and 19 electrodes. Fig. 1 shows an overview of
the applied montages, and Table 1 contains the across-montage
electrode mappings. In this scenario, the data associated with each
electrode is identical across the montages; only the absolute num-
ber of electrodes is reduced in order to simulate lower spatial cov-
erage during recording. After subsampling, the data were re-
referenced to the average of all signals contained in the subsam-
pled montage. In the following, the 128-electrode montage is con-
Fig. 1. Electrode montages. Each dot indicates one electrode. The red-highlighted ele
electrodes in the 128-electrode montage follow the BioSemi ABCD radial scheme. The el
standard positions.

3

sidered the baseline density, whereas the 64-, 32-, and 19-electrode
montages are considered subsampled densities.
2.2. Source reconstruction

Four source reconstruction techniques were investigated in the
present work. The methods are extensively detailed elsewhere, and
thus introduced only briefly here.

The linearly constrained, minimum variance beamformer (LCMV,
van Veen et al., 1997) is a spatial filtering-based, distributed dipole
solution. Each estimated source is independently reconstructed
based on the premise that the sensor-space measurements are
composed of activity from a specific dipolar source and interfer-
ence from other sources. Consequently, signal compounds not
coming from the defined sources are effectively removed, produc-
ing a noninvertible result (i.e., not all sensor-space activity is rep-
resented in the source estimation).

Minimum norm estimate (MNE, Hämäläinen and Ilmoniemi,
1994) returns the source-level activity that most accurately repre-
ctrodes are featured in all montages for reference purposes. The positions of the
ectrodes retained in the subsampled montages correspond approximately to 10–10



Table 1
Electrode mapping across montages.

ABCD 10–10 (10–20) ABCD 10–10 (10–20)

64 64 32 19 64 64 32 19

A1 Cz X X C7 F8 X X
A3 CPz C8 AF8
A5 P1 C11 FC2 X
A7 P3 X X C12 F2
A10 PO7 C15 AF4 X
A15 O1 X X C16 Fp2 X X
A17 PO3 X C17 Fpz
A19 Pz X X C19 AFz
A21 POz C21 Fz X X
A23 Oz X C23 FCz
A25 Iz C24 FC1 X
A28 O2 X X C25 F1
A30 PO4 X C28 AF3 X
A32 P2 C29 Fp1 X X
B2 CP2 X C30 AF7
B4 P4 X X D4 F3 X X
B7 PO8 D5 F5
B10 P10 D7 F7 X X
B11 P8 X X (T6) D8 FT7
B13 P6 D10 FC5 X
B14 TP8 D12 FC3
B16 CP6 X D14 C1
B18 CP4 D16 CP1 X
B20 C2 D19 C3 X X
B22 C4 X X D21 C5
B24 C6 D23 T7 X X (T3)
B26 T8 X X (T4) D24 TP7
B27 FT8 D26 CP5 X
B29 FC6 X D28 CP3
B31 FC4 D29 P5
C4 F4 X X D31 P7 X X (T5)
C5 F6 D32 P9

Note. The ABCD column lists the 64-electrode subset extracted from the baseline 128-electrode montage, which was defined in the BioSemi radial scheme. The approximately
corresponding 10–10 locations of the 64-electrode montage are listed in the next column. For the 32- and 19-electrode montages, a cross indicates the inclusion of a
particular electrode. As the 19-electrode montage is frequently specified according to the 10–20 nomenclature, alternative labels are provided where applicable.
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sents the sensor-space data (i.e., with the smallest error), while
minimising the overall energy. Thus, the solution represents the
most efficient source configuration capable of generating the mea-
sured sensor-space activity. In contrast to the LCMV method, the
MNE solution is invertible. The MNE solution has an inherent bias
towards superficial sources to which the sensors are most sensitive
(Dale et al., 2000), and depth-weighting is usually applied (Lin
et al., 2006).

Low-resolution electrical tomography (LORETA) is a modified
MNE solution specifically designed for low-resolution EEG
(Pascual-Marqui et al., 1994). It adds an extra constraint to the
solution, forcing it to be spatially smooth. Both the sLORETA (stan-
dardised, Pascual-Marqui, 2002) and eLORETA (exact, Pascual-
Marqui, 2007) algorithms return standardised current density esti-
mates, effectively resolving the bias towards superficial generators
in the original MNE solution. Importantly, under the right circum-
stances, these approaches provide zero localization error (i.e., the
maximum of the reconstructed activity overlaps with the physio-
logical source). The difference between the two LORETA algorithms
lies in how the source-space activity is reconstructed: in sLORETA,
the activity is reconstructed independently for each source (i.e.,
similarly to beamforming), yielding a noninvertible solution;
whereas in eLORETA, a single inverse operator is used to recon-
struct the activity in all the sources simultaneously (i.e., similarly
to the original MNE), resulting in an invertible solution.

2.2.1. Forward modelling
The source and forward models used for source reconstruction

were identical across the four applied inverse solutions and are
described in detail in Hatlestad-Hall et al. (2021b). In brief, the
source model consisted of a uniform grid with 10 mm spacing
4

defined in MNI space and subsequently transformed to the individ-
ual anatomy using an individual T1-weighted MRI, which was
available from each participant. Only source positions in cortical
regions according to the automated anatomical labelling atlas
(AAL, Tzourio-Mazoyer et al., 2002) were evaluated for this pur-
pose, resulting in 1210 sources. The conduction model was based
on a three-layer (inner skull, outer skull, and scalp) model, and
the boundaries were defined individually using the unified seg-
mentation algorithm (Ashburner and Friston, 2005). The subject-
specific electrode positions were extracted from the 3D scan of
the subject’s head while wearing the EEG cap. Finally, the forward
model was solved numerically using the symmetrical boundary
element method as implemented in OpenMEEG (Gramfort et al.,
2010).

2.3. Functional connectivity

2.3.1. Phase-locking value
The phase-locking value (PLV) is defined as the instantaneous

phase difference between two signals (Bruña et al., 2018;
Lachaux et al., 1999), and measures functional connectivity under
the assumption that brain areas generating signals whose phases
evolve dependently are functionally connected (Rosenblum et al.,
1996). The phase in the oscillatory activity of the brain is related
to cycles of activation and deactivation of neuronal populations
(Buzsáki et al., 2012). Consequently, a dependency between the
phases of signals implies a relationship between their activation
and deactivation cycles and can be considered an indication of
functional coupling. In the case of PLV, the level of coupling is esti-
mated from the stability of the phase difference between the sig-
nals: two signals with a constant phase difference are very likely
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to be coupled (PLV is 1), while two signals with a random phase
difference are likely independent (PLV is 0); any other case ranges
between 0 and 1.

2.3.2. Amplitude envelope correlation
The amplitude envelope correlation (AEC) is defined as the cor-

relation between the power variations in two signals (Brookes
et al., 2011a; Hipp et al., 2012). If two regions exhibit an increase
or decrease in their amplitude concurrently, their activity is likely
connected, and their AEC is high. In contrast, the AEC is low if the
power variations are unrelated. The measure is specified between 0
(uncorrelated) and 1 (perfect correlation).

2.3.3. Leakage corrections
Functional connectivity estimates are known to be affected by

source leakage (Stam et al., 2007), which spuriously increases the
estimated values. This effect relates to the spatial resolution of
the source reconstruction, and it is thus amplifiedwhen the number
of EEG electrodes is limited. Since source leakage can be modelled
as a linear mixing of true source activities, removing the instanta-
neous projection of one signal over the other can eliminate this
effect. In this work, the effect of source leakage was controlled sep-
arately for PLV and AEC. For the PLV, the instantaneous (i.e., zero-
lag) coupling was eliminated by considering only the (corrected)
imaginary component of the PLV, rather than the original value
(Bruña et al., 2018). For the AEC, orthogonalisation was used
(Brookes et al., 2011a). Although correcting for spatial leakage
between sources is generally recommended (Colclough et al.,
2016), removing instantaneous interactions has been shown to also
eliminate actual physiological information (Kovach, 2017) and to
reduce the test–retest reliability of the functional connectivitymet-
rics (Garcés et al., 2016). Therefore, both the original and leakage-
corrected versions of the estimates were investigated here. In the
following, the leak-correctedmeasures are termed ciPLV (corrected
imaginary part of the PLV) and lcAEC (leak-corrected AEC).

2.3.4. Measures calculations
As both PLV and AEC are known to exhibit frequency-specific

traits (Brookes et al., 2011b; Bruña et al., 2018), the functional con-
nectivity and the derived graph metrics were calculated separately
for two frequency bands; alpha (a; 8–12 Hz) and beta (b; 12–
30 Hz). The PLV and AEC measures were calculated between each
pair of source positions, resulting initially in a 1210-by-1210
matrix for each measure. By computing the root-mean-squared
value of all the connections between each pair of cortical areas
defined in the AAL atlas, these matrices were condensed to repre-
sent the functional connectivity between each pair of 80 (40 in
each hemisphere) cortical areas (Bruña and Pereda, 2021). This
resulted in an 80-by-80 matrix per participant, electrode density,
frequency band, and functional connectivity measure. Please see
the Supplementary Material on functional connectivity for a
detailed description of the PLV and AEC (and their leak-corrected
versions) calculations.

2.4. Functional network properties

2.4.1. Functional network construction
An important supposition in network analysis of functional con-

nectivity is that all the areas of the brain are constantly active and
thus, to some degree, are involved in neurophysiological processes.
To reflect this, the estimated adjacency matrix should be fully con-
nected, i.e., there should be no disconnected brain areas, or nodes.
However, as most graph theory metrics were designed to charac-
terise sparse networks (i.e., networks in which not all nodes are
interconnected), a predefined proportion of the network connec-
tions, or edges, is commonly discarded. In most cases, the weakest
5

edges are removed, as these are putatively more likely to be spuri-
ous (Fornito et al., 2012). Considering that there exists no consen-
sus regarding the size of this proportion (Garrison et al., 2015;
Hatlestad-Hall et al., 2021b; van Wijk et al., 2010), the calculation
of graph metrics in this work was initially performed on a range of
pre-defined network density (i.e., proportion of considered connec-
tions) thresholds (0.5 to 0.9, with 0.1 increments). As the network
density had a negligible effect on reproducibility across electrode
montages, the remaining analyses were conducted using a network
density threshold of 0.7. To preserve the full connectedness charac-
teristic in the threshold-imposed networks, the sparse matrices
were obtained by incrementally adding edges by descending
weight order to the minimum spanning tree backbone of the
inverse dense functional connectivity matrix until the specified
sparsity level was reached (Hatlestad-Hall et al., 2021b). The min-
imum spanning tree is defined as the subnetwork that connects all
nodes while minimising edge weights and avoiding loops (Stam
et al., 2014; Tewarie et al., 2015).

For the calculation of the small world index, the clustering coef-
ficient and the characteristic path length were normalised against
the mean of the corresponding measure calculated over 25 pseudo-
random null model networks re-wired from the dense functional
connectivity matrix, while preserving weight distributions
(Rubinov and Sporns, 2011).

2.4.2. Graph theory metrics
In the present work, five commonly reported global graph met-

rics were considered, including the average node strength, the
characteristic path length, the clustering coefficient, and the assor-
tativity coefficient. Also, the small world index, here defined as the
ratio between the normalised measures of the clustering coeffi-
cient and the characteristic path length (Humphries and Gurney,
2008; Watts and Strogatz, 1998), was examined. In brief, the char-
acteristic path length is the average shortest path between all pairs
of nodes in the network, whereas the clustering coefficient is the
fraction of triangles around an individual node (i.e., the fraction
of the node’s neighbours that are also neighbours of each other).
The small world index is a measure of the balance between local
segregation (clustering) and global integration (long paths). Assor-
tativity, also known as the assortative mixing coefficient, is a mea-
sure of a network’s nodes’ preference to connect to other nodes
with a similar degree, i.e., number of edges (Newman, 2002). It is
defined as the Pearson correlation between all nodes on opposite
ends of an edge (Leung and Chau, 2007; Rubinov and Sporns,
2010). The mean network strength is equal to the mean node
strength, defined as the sum of the weights of the edges connected
to the node. For comprehensive accounts of graph metrics and
their mathematical definitions, the reader is referred to Rubinov
and Sporns (2010) and Newman (2008).

2.5. Reproducibility of graph theory metrics across montages

To test the reproducibility of estimated EEG-derived graph the-
ory metrics across montages of varying electrode density, we used
the intraclass correlation coefficient (ICC, McGraw and Wong, 1996).
The ICC reflects the ratio of between-subject (bs) variance to
within-subject (ws) variance, and is normalised between 0 and 1,
where a value above 0.5 indicates greater between-subject vari-
ance (Bassett et al., 2011). ICCs above 0.5 are commonly suggested
to indicate moderate reproducibility, and values above 0.75 good
reproducibility (Koo and Li, 2016). In this case, where the measure-
ments are independent and the montage factor has fixed levels
(type C-1), the ICC is defined as (McGraw and Wong, 1996):

ICC ¼ r2
bs

r2
bs þ r2

ws
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The ICC was calculated separately for each unique combination
of source reconstruction method, functional connectivity measure,
network density, frequency band, and graph theory metric. To
assess if the reproducibility of a graph metric across electrode den-
sities depends on any of the first three factors, we carried out two
separate repeated measures ANOVAs for the two frequency bands
(a and b). The measurements were represented by the ICCs associ-
ated with the five different graph metrics.

Subsequently, one-sample t tests (one-tailed) were conducted
to test whether each estimated ICC was greater than 0.5, i.e., indi-
cating moderate consistency (Koo and Li, 2016). As the previous
analysis revealed the ICCs independence of the network density
level, the ICCs were collapsed across the five network density
levels for this analysis. The tests’ p values were corrected for mul-
tiple comparisons using the false discovery rate (FDR) procedure
(Benjamini and Yekutieli, 2001).

2.6. Correlation of graph theory metrics between the baseline and
subsampled EEG montages

In a second series of analyses, we narrowed the scope to inves-
tigate the interrelationship between graph theory metrics derived
from the baseline, high-density montage (128 electrodes) and the
subsampled montages (64, 32, and 19 electrodes). For these analy-
ses, an a priori assumption was made about the high-density mon-
tage having a superior signal-to-noise ratio compared to those
composed of sparser electrode constellations. Pearson correlation
coefficients were calculated between arrays of values obtained
from the baseline and subsampled montages separately for every
combination of source reconstruction method, functional connec-
tivity measure, and graph theory metric (strength, path length,
clustering coefficient, assortativity, and small world index). Con-
sidering previous findings that graph metrics derived from adja-
cency matrices with varying sparsity levels exhibit different
absolute values while retaining their relative difference
(Hatlestad-Hall et al., 2021b; van Wijk et al., 2010), and that the
ICC in this study was not significantly dependent on the network
density level, the analyses were carried out using adjacency matri-
ces with a set network density of 0.7, as explained above. To test
for main effects of source reconstruction method, functional con-
nectivity measure, and montage, on the magnitude of the correla-
tion between graph theory metrics derived from the baseline and
subsampled electrode densities, a three-way repeated measures
ANOVA was conducted for each of the frequency bands (a and b).
The five graph theory metrics were defined as observations.

Finally, we analysed the correlations between the baseline and
subsampled montages broken down by the individual graph met-
ric. As the correlation coefficients were independent of the func-
tional connectivity statistic in the repeated measures ANOVA, the
graph theory metrics were averaged across functional connectivity
measures for this analysis. Pearson correlation coefficients were
calculated separately for each combination of graph theory metric
and source reconstruction method for each of the frequency bands
(a and b). The correlation p values were computed nonparametri-
cally with 1 million permutations and then corrected for multiple
comparisons with the FDR procedure (60 comparisons per fre-
quency band). Lastly, the correlation coefficients were compared
pairwise between the source reconstruction methods using t tests
with Bonferroni-corrected p values.

2.7. Relative effect of the inverse solution and electrode density on
graph metrics

In a second analysis, we tested the effect of source reconstruc-
tion method and electrode density on derived graph theory metric
values, using repeated measures ANOVAs, implementing these as
6

within-subject factors. The repeated measures models were
defined separately for each frequency band, graph metric, and
functional connectivity measure.

2.8. Reproducibility of nodal functional connectivity across montages

Mathematically, equally sized functional connectivity matrices
with different distributions may give rise to similar estimates of
several global graph theory metrics. Thus, we conducted a series
of analyses to delineate the consistency and reproducibility of
functional connectivity estimates across electrode density levels
and source reconstruction methods. As the different functional
connectivity measures give estimates with variable means, ranges,
and variance, and are thus not directly comparable, the measures
were analysed separately. The analysis was two-fold. First, we cal-
culated the ICC across all four electrode density levels for each
source reconstruction method, and secondly, we calculated the
Pearson correlation between functional connectivity estimates
obtained from the baseline electrode density level and the subsam-
pled levels. The coefficients were calculated separately for each
network edge, then averaged for each node (AAL region). Consider-
ing the symmetricity of the electrode montages, and that we did
not expect systematic differences in estimated connectivity
between hemispheres, the nodal coefficients were averaged across
the hemispheres. For the ICCs, we conducted a series of nonpara-
metric significance tests based on 1 million permutations to eval-
uate if each coefficient was greater than 0.5. The resulting p
values were corrected for multiple comparisons using the FDR pro-
cedure (16 comparisons per frequency band).

2.9. Statistics and software

The network analysis was conducted with functions available in
the Brain Connectivity Toolbox (BCT; ver. 2019-03-03, Rubinov and
Sporns, 2010) and with in-house MATLAB code (see Data availabil-
ity statement). Null model networks were generated with the BCT
function null_model_und_sign. Correlation coefficients and the ICC
statistic was calculated in MATLAB (ICC.m, MATLAB File Exchange,
https://se.mathworks.com/matlabcentral/fileexchange/22099-
intraclass-correlation-coefficient-icc), and the repeated measures
ANOVAs were conducted with jamovi (ver. 2.2.5, The jamovi pro-
ject, https://www.jamovi.org). The Greenhouse-Geisser-corrected
degrees of freedom are reported.

To quantify the proportion of explained variance by the
repeated measures model factors, we used the effect size estimate
eta squared, g2 (Lakens, 2013). The corresponding effect size esti-
mate used for Pearson correlations was r2. For post hoc compar-
isons based on the repeated measures models’ estimated
marginal means, effect size estimates are provided in the form of
Hedges’ g with the mean standard deviation of the samples as
the standardiser (gAV). In the violin plots (see Figures), the marker
represents the median value, the vertical black line represents the
interquartile range, the height of the violin represents the range,
and the violin shape represents a kernel density estimate of the
data.

2.10. Ethical approval

Ethical approval for the study was granted by the Regional
Committees for Medical Research Ethics of Norway (reference no.
2015/2470).

2.11. Participant informed consent

Following the Declaration of Helsinki, all participants provided
informed written consent.

https://se.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://se.mathworks.com/matlabcentral/fileexchange/22099-intraclass-correlation-coefficient-icc
https://www.jamovi.org
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2.12. Data availability

The functional connectivity and graph metric data that support
the findings of this study, and the MATLAB code used for calculat-
ing graph metrics and statistics, are available upon request.
3. Results

3.1. Graph theory metrics

Figs. 2 to 5 display the graph theory metric values obtained
from the various constellations of functional connectivity measure,
source reconstruction method, and montage density, collapsed
across the a and b bands.

3.2. Reproducibility of graph theory metrics across EEG electrode
montages and source reconstruction methods

The intraclass correlation coefficient (ICC) was computed across
electrode montages separately for every combination of source
reconstruction method, functional connectivity measure and net-
work density level.

We observed a significant main effect of the source reconstruc-
tion method in both a (F3,12 = 11.480, p < 0.001, g2 = 0.093) and b
(F3,12 = 76.531, p < 0.001, g2 = 0.237) bands. Additionally, a signif-
icant interaction effect between source reconstruction method and
functional connectivity measure was evident (a: F9,36 = 2.600,
p = 0.020, g2 = 0.031; b: F9,36 = 5.904, p < 0.001, g2 = 0.048). Sub-
sequent post hoc comparisons for the b band revealed pairwise sig-
nificant differences between the LCMV method and the MNE
(t4 = 10.210, pBonf = 0.003, gAV = 1.298), eLORETA (t4 = 9.362,
pBonf = 0.004, gAV = 1.493), and sLORETA (t4 = 8.328, pBonf = 0.007,
gAV = 1.403) methods, with the LCMV method consistently exhibit-
ing the larger mean ICC coefficient (see Fig. 6). The pairwise differ-
ences in the a band were smaller, and none reached a significant
level after correction for multiple comparisons.
Fig. 2. Graph theory metrics derived from PLV. The plots represent the observed mean
phase-locking value (PLV). Standard deviation is denoted by the error bars. Abbreviations
sLORETA (standardised LORETA); eLORETA (exact LORETA).
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Next, we tested whether the observed ICC coefficients were sig-
nificantly larger than 0.5, suggesting moderate consistency (Koo
and Li, 2016). After correcting for multiple comparisons (FDR),
LCMV was the sole source reconstruction method presenting mean
ICC values significantly larger than 0.5, in combinations with AEC
(a: t4 = 9.568, pFDR = 0.005; b: t4 = 9.751, pFDR = 0.003), ciPLV (a:
t4 = 4.642, pFDR = 0.026), and lcAEC (a: t4 = 6.346, pFDR = 0.013; b:
t4 = 13.936, pFDR = 0.001). See Fig. 6 for ICCs for the individual
source reconstruction methods, functional connectivity measures,
and graph theory metrics.

In the repeated measures ANOVA for the correlation coeffi-
cients, main effects of the source reconstruction method
(F3,12 = 10.003, p = 0.001, g2 = 0.070) and the montage
(F2,8 = 33.603, p < 0.001, g2 = 0.106) were observed in the a band.
Post hoc comparisons indicated significant differences between the
64- and 19-electrode montages (t4 = 5.694, pBonf = 0.014,
gAV = 0.862), and between the 32- and 19-electrode montages
(t4 = 11.222, pBonf = 0.001, gAV = 0.653), whereas none of the indi-
vidual source reconstruction methods differed significantly from
each other. Similarly, in the b band, both the source reconstruction
method (F3,12 = 77.707, p < 0.001, g2 = 0.132) and the montage
(F2,8 = 38.152, p < 0.001, g2 = 0.126) displayed significant main
effects. b band post hoc comparisons of the source reconstruction
methods revealed that the correlation coefficients derived from
the LCMV method were significantly larger than those derived
from the remaining methods (MNE: t4 = 13.782, pBonf < 0.001,
gAV = 1.186; eLORETA: t4 = 10.745, pBonf = 0.003, gAV = 1.212; sLOR-
ETA: t4 = 14.565, pBonf < 0.001, gAV = 1.256). In terms of montages,
the correlation coefficients were significantly larger for the 64-
electrode montage compared to 32 electrodes (t4 = 4.291,
pBonf = 0.038, gAV = 0.516) and 19 electrodes (t4 = 6.919, pBonf = 0.007,
gAV = 1.311), and for the 32-electrode montage compared to 19
electrodes (t4 = 5.978, pBonf = 0.012, gAV = 0.686). Furthermore,
for both frequency bands, two-way interaction effects between
the source reconstruction method and the montage (a:
F6,24 = 4.539, p = 0.003, g2 = 0.009; b: F6,24 = 13.862, p < 0.001,
graph theory metrics derived from estimates of functional connectivity based on the
: LCMV (linearly constrained, minimum variance); MNE (minimum norm estimate);



Fig. 3. Graph theory metrics derived from AEC. The plots represent the observed mean graph theory metrics derived from estimates of functional connectivity based on the
amplitude envelope correlation (AEC). Standard deviation is denoted by the error bars. Abbreviations: LCMV (linearly constrained, minimum variance); MNE (minimum norm
estimate); sLORETA (standardised LORETA); eLORETA (exact LORETA).

Fig. 4. Graph theory metrics derived from ciPLV. The plots represent the observed mean graph theory metrics derived from estimates of functional connectivity based on
the corrected imaginary part of the phase-locking value (ciPLV). Standard deviation is denoted by the error bars. Abbreviations: LCMV (linearly constrained, minimum
variance); MNE (minimum norm estimate); sLORETA (standardised LORETA); eLORETA (exact LORETA).
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g2 = 0.026), the source reconstruction method and the functional
connectivity measure (a: F9,36 = 2.568, p = 0.021, g2 = 0.032; b:
F9,36 = 3.020, p = 0.009, g2 = 0.058), and the montage and the func-
tional connectivity measure (a: F6,24 = 2.905, p = 0.028, g2 = 0.020;
b: F6,24 = 3.700, p = 0.010, g2 = 0.024) were evident. There was no
significant main effect of the functional connectivity measure in
either frequency band.
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Subsequently, we analysed the correlations between the base-
line 128-electrode montage and the subsampled montages col-
lapsed across the functional connectivity measures. Across both
source reconstruction method and graph theory metric factors,
the 64-electrode montage showed the highest mean correlation
with the baseline montage, in both the a band (r = 0.790) and
the b band (r = 0.780), followed by the 32-electrode montage (a:



Fig. 5. Graph theory metrics derived from lcAEC. The plots represent the observed mean graph theory metrics derived from estimates of functional connectivity based on
the leak-corrected amplitude envelope correlation (lcAEC). Standard deviation is denoted by the error bars. Abbreviations: LCMV (linearly constrained, minimum variance);
MNE (minimum norm estimate); sLORETA (standardised LORETA); eLORETA (exact LORETA).

Fig. 6. ICC across electrode density levels. The plots represent the intraclass correlation coefficient (ICC) computed across graph theory metrics derived from the electrode
montages of varying spatial density, broken down by source reconstruction method. The right-hand violins of each plot display the distribution of ICCs across the graph
metrics; those marked with an asterisk are significantly larger than 0.5 (pFDR < 0.05). Abbreviations: PLV (phase-locking value); ciPLV (corrected imaginary part of the PLV);
AEC (amplitude envelope correlation); lcAEC (leak-corrected AEC).
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r = 0.714; b: r = 0.682) and the 19-electrode montage (a: r = 0.516;
b: r = 0.519), respectively. Of the investigated source reconstruc-
tion methods, LCMV displayed the largest mean correlation coeffi-
cient in all the subsampled montages in both frequency bands.
When compared to the other methods, LCMV presented with a sig-
nificantly larger mean correlation coefficient than MNE (a/19 elec-
trodes: t4 = 6.814, pBonf = 0.015; b/32 electrodes: t4 = 4.947,
pBonf = 0.047), eLORETA (b/32 electrodes: t4 = 7.014, pBonf = 0.013;
b/19 electrodes: t4 = 6.694, pBonf = 0.016) and sLORETA (a/19 elec-
trodes: t4 = 5.211, pBonf = 0.039; b/32 electrodes: t4 = 5.027,
pBonf = 0.044; b/19 electrodes: t4 = 4.901, pBonf = 0.048). A complete
overview of the correlation coefficients for each source reconstruc-
tion method, degree of reduced electrode density, and graph theory
metric, is available in Fig. 7.
3.3. Relative effect of the source reconstruction method and electrode
density on graph metrics

The repeated measures ANOVA revealed significant main effects
of both within-subject factors (source reconstruction method and
electrode density; subscripted SR and ED, respectively, below), as
well as interaction effects, across most of the functional connectiv-
ity measures and graph theory metrics in both frequency bands (a,
b). All g2 estimates broken down by graph theory metric, and fre-
quency band are presented in Fig. 8.

Of the functional connectivity measures, PLV, AEC, and lcAEC
showed a similar pattern, characterised by a larger proportion of
variance (g2) in mean node strength, path length, clustering coef-
Fig. 7. Correlations between the high-density and subsampled montages. The plots r
electrode montage and the subsampled montages. The data are collapsed across the
distribution of correlations across the graph metrics. The correlations marked with an
minimum variance); MNE (minimum norm estimate); sLORETA (standardised LORETA);
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ficient, and small world index, explained by the electrode density
relative to the source reconstruction method (a: mean
g2

ED = 0.286, mean g2
SR = 0.062; b: mean g2

ED = 0.276, mean
g2

SR = 0.124). For assortativity, the pattern was reversed in PLV and
AEC (a: mean g2

ED = 0.052, mean g2
SR = 0.150; b: mean

g2
ED = 0.039, mean g2

SR = 0.169). The ciPLV measure showed consis-
tently low and similar proportions of variance explained by elec-
trode density and source reconstruction across all the graph theory
metrics (a: mean g2

ED = 0.040, mean g2
SR = 0.041; b: mean

g2
ED = 0.037, mean g2

SR = 0.040).
3.4. Reproducibility of nodal functional connectivity across different
electrode densities

In general, all combinations of source reconstruction method
and functional connectivity measure displayed relatively large ICCs
(Fig. 9), all significantly larger than 0.5 (a: pFDR values < 0.001; b:
pFDR values < 0.024) except for the combinations eLORETA/AEC in
both a (pFDR = 0.081) and b (pFDR = 0.343) bands.

Investigating the node-wise functional connectivity of the sub-
sampled montages individually, the 64-electrode montage dis-
played the largest correlations with the baseline montage,
followed by the 32- and 19-electrode montages, respectively
(Fig. 10). For all the method combinations, significant mean node
correlations were evident between all the subsampled montages
and the baseline montage in the a band (r values > 0.318, r2 val-
ues > 0.101, p values < 0.038). In the b band, all combinations, with
the exception of eLORETA/AEC and sLORETA/AEC, demonstrated
epresent the correlation (r2) between graph metrics obtained from the high-density
functional connectivity measures. The right-hand violins of each plot display the
asterisk are significant (pFDR < 0.05). Abbreviations: LCMV (linearly constrained,
eLORETA (exact LORETA).



Fig. 8. Inverse solution and montage effects on graph theory metrics. The plots represent the effect size estimate, g2, of the relative effects of the inverse solution and
montage on graph theory metrics, in addition to their interaction effect. The significant effects of the repeated measures model are marked with an asterisk (p < 0.05).
Abbreviations: PLV (phase-locking value); ciPLV (corrected imaginary part of the PLV); AEC (amplitude envelope correlation); lcAEC (leak-corrected AEC).
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significant mean node correlations between the lower density
montages and the baseline montage (r values > 0.312, r2 val-
ues > 0.097, p values < 0.044).
4. Discussion

In the last decade, there has been a significant growth in apply-
ing graph theory to characterise functional brain networks derived
from EEG. To date, however, there is no consensus regarding the
necessary methodological implementations. In this study, we
demonstrate that methodological choices have a nontrivial effect
on the estimation of functional connectivity and graph theory met-
rics. Particular attention was here paid to the number of EEG elec-
trodes used in the recordings, i.e., the spatial sampling density, as
this element may be the most pertinent to the potential clinical
value of these approaches. Our results show that several widely
employed graph theoretical concepts, such as the clustering coeffi-
cient and the small world index, are inconsistent between high-
density data and data sampled with fewer electrodes: the fewer
the electrodes used, the larger the difference to the baseline mon-
tage of 128 electrodes. Furthermore, we found that the repro-
ducibility of graph theory metrics across different electrode
density arrays depends on both the applied source reconstruction
method and the statistic used to estimate functional connectivity.
Although it is essential to emphasise that reproducibility indices
do not imply validity, it might be argued that reliability across spa-
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tial electrode density is crucial for guiding the methodological
parameters that frame a network study.
4.1. Consistency across EEG electrode densities

The same fundamental principles govern spatial frequency as
frequency in the time domain: the Nyquist theorem of discretiza-
tion asserts that the sampling rate must be at least twice (2.5 to
account for the possibility of phase-locking) as frequent as the
maximum frequency to be described in order to avoid aliased sig-
nals (i.e., an artificial increase in energy at lower frequencies
caused by contamination from higher frequencies). Unlike in the
time domain, the spatial signal is intrinsically a discrete sampling
of the continuous scalp surface potential field, constrained by the
density of the electrode array. Importantly, prior to digitization,
the temporal signal can be low-pass filtered to remove aliasing
information, whereas the spatial signal cannot, eliminating the
opportunity to rectify undersampling (Srinivasan et al., 1998).
The poorly conductive skull is the only spatial anti-aliasing filter
available. Previous studies suggest that an electrode separation of
approximately 2–3 cm is the minimum required to obtain spatial
EEG patterns without undersampling (Freeman et al., 2003;
Srinivasan et al., 1998). To meet this need for an average adult
human head, a minimum of 100 electrodes are required (Michel
et al., 2004). However, electrode arrays with inter-electrode spac-
ing between 0.5 and 1 cm have been shown to yield even more
functional information (Petrov et al., 2014). This suggests that



Fig. 9. Node-level ICC across electrode density levels. The violins represent the distribution of the intraclass correlation coefficient (ICC) values computed across the
electrode montages for each of the 40 network nodes (averaged across hemispheres). The mean ICCs that are significantly larger than 0.5, are marked with an asterisk
(pFDR < 0.05). Abbreviations. LCMV (linearly constrained, minimum variance); MNE (minimum norm estimate); sLORETA (standardised LORETA); eLORETA (exact LORETA);
PLV (phase-locking value); ciPLV (corrected imaginary part of the PLV); AEC (amplitude envelope correlation); lcAEC (leak-corrected AEC).
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the threshold for preventing undersampling in scalp EEG may be
more stringent than previously assumed.

Several studies have demonstrated advantages of using high-
density electrode arrays. Epileptic source localisation accuracy rose
with the number of electrodes up to 128, after which the effect of
further increases became marginal (Sohrabpour et al., 2015; Song
et al., 2015). Montages with fewer than 64 electrodes yielded poor
outcomes. Furthermore, research utilising source-level functional
connectivity (Staljanssens et al., 2017a, 2017b) and high frequency
oscillations (Kuhnke et al., 2018) to localise seizure onset zones in
epilepsy patients revealed a considerable advantage of applying
high density electrode montages. Here, we demonstrate that com-
pared to the 128-electrode montage, the functional connectivity
estimates and graph theory metrics show fairly strong correlations
for the 64-electrode montage, lesser correlations for the 32-
electrode montage, and the weakest correlations for the 19-
electrode montage. In keeping with the source localisation accu-
racy from other studies, the correlation magnitude increase per
electrode is substantially greater when increasing from 19 to 32
than when increasing from 32 to 64. These results may indicate
that certain functional brain information is shared across spatial
frequency levels and that the extent of spatial aliasing distortion
follows a trajectory.

In our results, the intraclass correlation coefficients (ICC) mea-
sured across electrode densities were slightly higher for node-
wise functional connectivity estimates compared to graph theory
metrics. For the former, ICCs (across nodes) ranged from around
0.5 to 0.9, whereas for the latter, the lowest values were close to
0.2. This implies that graph theory metrics, irrespective of the
employed source reconstruction method and functional connectiv-
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ity measure, are more susceptible to electrode sparsity than their
precursor in the analysis pipeline, i.e., the applied functional con-
nectivity measures. However, it remains uncertain what, in this
context, constitutes a reasonable ICC size. For example, it is known
that the ICC is reliant on the range and variance in the data (Lee
et al., 2012), i.e., parameters that were not thoroughly studied in
this paper. Yet, the variance associated with the majority of graph
theory metrics was larger for sparser montages.

4.2. Graph theory metrics across electrode densities

Basic and complex topological characteristics of a functional
brain network can be efficiently summarised using graph theory
metrics. However, understanding the impact of electrode density
on EEG-based graph theory metrics is crucial for their informative
use. In the current study, we found that several of the widely used
graph theory metrics, calculated in source-space, varied as a func-
tion of the electrode density. The average node strength displayed
a predictable pattern across all functional connectivity measure-
ments, with sparser electrode montages overestimating its magni-
tude. This also held true for the clustering coefficient, whereas the
characteristic path length was underestimated for montages with
low spatial density. All three observations are probably related:
the lower the spatial sampling, the less activity is unique to each
of the reconstructed sources. Regarding node strength, this results
in an overestimation of connectivity between neighbouring nodes,
which in turn increases the number of local edges retained when a
threshold is applied to the network. As a consequence, more nodes
form local triplets in the network, which inflates the clustering
coefficient. In direct relation to the overestimation of local connec-



Fig. 10. Node-level correlations between the high-density and subsampled montages. The plots represent the distribution of correlations (r2) between node-level
functional connectivity obtained from the high-density electrode montage and the subsampled montages. The scatters on the right-hand axis represent the individual node
correlation pFDR values. Note that pFDR values above 0.1 are not displayed. Abbreviations: LCMV (linearly constrained, minimum variance); MNE (minimum norm estimate);
sLORETA (standardised LORETA); eLORETA (exact LORETA); PLV (phase-locking value); ciPLV (corrected imaginary part of the PLV); AEC (amplitude envelope correlation);
lcAEC (leak-corrected AEC).
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tivity, the characteristic path length of the network is decreased;
more short paths are retained than longer ones. This does not nec-
essarily imply that functional networks constructed from sparse
electrode montages are without long paths. However, due to the
overrepresentation of within-module pathways, the analysis will
be less sensitive to the presence of longer paths. This issue should
be studied further using network analysis at the node level.

Our data is less decisive regarding the small world index and
network assortativity. The small world index is intriguing because
it is a normalised metric that is fairly extensively employed. In
principle, the small world index is more directly comparable
among montages due to the normalisation that accounts for the
confounding variances in clustering coefficient and characteristic
path length. Despite this, our findings suggest that the small world
index increases as a function of electrode sparsity. This was the
case for all inverse solutions and functional connectivity measures,
with the exception of the corrected imaginary part of the PLV
(ciPLV). These results contrast with a prior study that addresses
this same subject and suggested that the small world index was
similar in lower and higher electrode densities (Miraglia et al.,
2021). It should be emphasised, however, that the measure of func-
tional connectivity applied there, lagged linear coherence, was not
examined here, and in their study, the most dense montage com-
prised 59 electrodes. The small world index quantifies the extent
to which a network consists of local, highly connected modules
while maintaining longer, direct connections between modules.
Our results demonstrate that functional networks created from
sparse electrode montages skew this ratio between local and global
connectedness, even for normalised metrics. In contrast, the elec-
trode density had no effect on the network’s assortativity. Assorta-
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tivity, which is a measure of a network’s nodes’ preference to
connect to other nodes with a similar degree, was the only graph
theory measure investigated here that was not notably more
dependent on the montage than the applied inverse solution.

4.3. Source reconstruction methods and functional connectivity
measures

Interestingly, when targeting a particular neural source (i.e.,
well-defined focal activity), reasonable localisation accuracy can
be achieved with as few as 19 electrodes, but only by employing
beamforming techniques to solve the inverse problem (Nguyen-
Danse et al., 2021). This is consistent with the current findings,
in which the beamformer approach (LCMV) displayed greater
reproducibility across the majority of functional connectivity mea-
sures and graph theory metrics than the other methods. Beam-
formers reconstruct source-level activity source-by-source,
isolating focal activity as a result, whereas other techniques that
reconstruct all sensor-level activity (i.e., produce invertible solu-
tions) may be more sensitive to spatial aliasing. The remaining
inverse solutions tested here exhibited generally significant corre-
lations between graph theory metrics obtained from the 128-
electrode montage and the 64- and 32-electrode tiers. In assessing
the 19-electrode montage, however, all inverse solutions except for
LCMV failed to demonstrate significant correlations with the base-
line density for several key metrics, including the small world
index. This was true for the two frequency bands studied here.

The various functional connectivity measures differ in their
underlying assumptions and the magnitude of their estimates
(van Diessen et al., 2015). Phase and amplitude coupling, both
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physiologically plausible in the brain, were considered in this
study. Their values seem to be independent, at least up to a certain
level; however, phase and amplitude coupling might reflect differ-
ent processes, as the energy required to alter the phase of a system
is negligible in comparison to the energy required to increase its
amplitude (Siems and Siegel, 2020). Graph theory metrics will
inherently vary based on the functional connectivity measure from
which they are derived, due to these fundamental underlying dif-
ferences. Yet, in our results, the choice of functional connectivity
measure had no significant effect on the ICC between the four
decreasing density montages. This suggests a similar degree of
reproducibility among the statistics under consideration. However,
regarding the dependency of graph theory metrics on electrode
density, the PLV, AEC, and leak-corrected AEC all demonstrated
comparable patterns, whereas the ciPLV did not. The ciPLV statistic
measures the portion of the PLV that is not due to zero-lag connec-
tivity (Bruña et al., 2018), and phase synchronisation metrics
removing zero-lag have demonstrated low test–retest reliability
of resting-state activity in prior research (Colclough et al., 2016;
Garcés et al., 2016). This could imply that these measures may
neglect some physiologically plausible connectivity (Kovach,
2017), which could have an effect on the estimation of network-
based properties such as those considered in the current work. In
addition, ciPLV typically returns very low values of synchronisation
(here implied by the comparatively low mean node strength), thus
the network thresholding procedure performed prior to the esti-
mation of graph theory metrics may be more susceptible to noise
than in other measures. Overall, this may indicate that this type
of network analysis is less reliable for ciPLV, although the metric
can still provide useful information in other contexts (see, for
example, Bruña, 2019).
4.4. Clinical relevance

Ultimately, a context-specific cost-benefit analysis must iden-
tify the ideal electrode array densities in practice. Increasing the
number of recording sites results in higher-dimensional data at
the cost of both material and human resources. Recently, Stoyell
et al. (2021) reported a series of epileptic patient cases in which
high-density EEG significantly aided clinical diagnostics, including
localisation of epileptogenic zones in close proximity to eloquent
motor/language cortex and identification of high-frequency rip-
ples. In generalising from these cases, the authors highlighted
future clinical applications for high-density EEG. According to cur-
rent recommendations, a minimum of 64 electrodes should be uti-
lised when source localisation is important (Seeck et al., 2017). By
demonstrating a relatively strong correspondence between func-
tional connectivity and graph theory metrics derived from 64
and 128 electrodes, our current findings support this recommenda-
tion of expanding the use of high-density (at least 64 electrodes)
EEG into clinical practice. Importantly, recent research has identi-
fied a range of potential biomarker applications for EEG-based
brain network analysis, such as the identification of disease-
specific patterns (for a review, see Stam, 2014) and neurodegener-
ation risk (for a review, see Rossini et al., 2020). Our findings sug-
gest that low-density montages may lack the spatial sensitivity
required to capture the key signal features needed in these appli-
cations. Also, significant and distinct associations between the
functional brain network topology and cognitive functions, both
in the presence and absence of brain pathology, as demonstrated
by previous research from our group (Hatlestad-Hall et al.,
2021a) and others (Hassan et al., 2017; Langer et al., 2012), might
not be detectable with sparse electrode arrays. To determine the
sensitivity of such biomarkers under sparse electrode conditions,
further investigations are required.
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A frequent objection against the utility of high-density EEG in
clinical practice, in addition to the resource-intensive application
of more dense electrode montages, is the sophisticated data pro-
cessing and analyses required for source reconstruction. Indeed,
reports frequently recommend the use of detailed forward models
based on individual anatomy (from MRI and/or CT) and precise
representations of electrode positions relative to the head surface
(e.g., Liu et al., 2018; Taberna et al., 2019; Vorwerk et al., 2014).
However, other studies suggest that, at least for epileptic source
localisation, the importance of complicated forward modelling in
practical application may be reduced (Birot et al., 2014). The same
study demonstrated the feasibility of adapting template electrode
positions to the head shape derived from an MRI, as opposed to
individually obtaining each position. It remains to be determined
whether these findings also hold true for functional connectivity
estimation and network topology characterisation.

4.5. Limitations

We would like to highlight some important limitations of this
study. First, we did not address the issue of electrode coverage. Pre-
vious research suggests that accurate source localisation is strongly
influenced by the head surface coverage, with a particular empha-
sis on the inferior temporal lobes, which are rarely covered by nor-
mal EEG montages (Song et al., 2015). Second, our data is based
solely on one recording session, from which all the subsampled
montages were derived from. Actual repeated measurements
may have offered additional and important insight into the internal
consistency of the graph theory metrics; for instance, does a 128-
electrode montage produce more consistent observations over
time than a 19-electrode montage? Third, analysing the advantage
of increasing to 256 electrodes (and beyond) would be useful in
light of recent findings that suggest even denser montages (more
than 128 electrodes) may capture meaningful functional informa-
tion. Therefore, in a strict sense, the densest electrode array inves-
tigated here does not represent ‘‘ground truth,” limiting the
conclusions that may be drawn from the current data. In addition,
the conventional 10–10 and 10–20 electrode placements are not
represented in the montages examined here. Fourth, the current
study was limited to global network properties. Considering that
local graph measurements may theoretically have clinical promise
for identifying specific abnormal brain regions (nodes) participat-
ing in functional networks, we recommend additional research
into the effect of electrode density on such measures. Finally, to
limit the number of analyses conducted in the current investiga-
tion, only the alpha and beta frequency ranges were selected for
examination. Consequently, caution must be exercised when
extrapolating the current findings to slower (delta, theta) or faster
(gamma) frequency ranges.

4.6. Conclusion

Functional connectivity estimates and graph theory metrics
derived from EEG data are inherently dependent on the number
of electrodes used to record the original data due to variations in
spatial frequency. The purpose of this study was to contribute to
the investigation of this subject, which, in our opinion, has not
received sufficient attention.

First, our results demonstrate that the correlation between
graph theory metrics and functional connectivity estimates from
the high-density baseline montage (128 electrodes) and the sub-
sampled montages decreases with electrode sparsity. Second,
when low-density electrode montages are used, short-distance
network edges are overestimated in comparison to long-distance
edges, resulting in an inflated small world index. Third, the choice
of source reconstruction method influences the reproducibility of
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graph theory metrics and, to a lesser extent, estimates of functional
connectivity. Further research is required to determine the preci-
sion of functional brain network-based biomarkers at various elec-
trode densities. Nevertheless, in order to strike a balance between
resource needs and accuracy, we recommend using at least 64
electrodes when characterising functional brain networks with
graph theory metrics derived from EEG.

Competing interests

CHH and IHH are shareholders in the medical technology start-
up BrainSymph AS. The remaining authors report no competing
interests.

Acknowledgements

This project is funded by the South-Eastern Norway Regional
Health Authority, project number 2016033, and is in partnership
with the Centre for Digital Life Norway, supported by the Research
Council of Norway’s grant 248810. The authors gratefully acknowl-
edge the contributions of Aksel Erichsen and Vebjørn Andersson to
the data collection phase of this study.

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.clinph.2023.03.002.

References

Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839–51.
https://doi.org/10.1016/j.neuroimage.2005.02.018.

Baroumand AG, Arbune AA, Strobbe G, Keereman V, Pinborg LH, Fabricius M, et al.
Automated ictal EEG source imaging: A retrospective, blinded clinical validation
study. Clin Neurophysiol 2021. https://doi.org/10.1016/j.clinph.2021.03.040.

Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST. Conserved and variable
architecture of human white matter connectivity. Neuroimage
2011;54:1262–79. https://doi.org/10.1016/j.neuroimage.2010.09.006.

Bassett DS, Bullmore ET. Small-World Brain Networks Revisited. Neuroscientist
2017;23:499–516. https://doi.org/10.1177/1073858416667720.

Benjamini Y, Yekutieli D. The Control of the False Discovery Rate in Multiple Testing
under Dependency. Ann Stat 2001;29:1165–88.

Birot G, Spinelli L, Vulliémoz S, Mégevand P, Brunet D, Seeck M, et al. Head model
and electrical source imaging: a study of 38 epileptic patients. Neuroimage Clin
2014;5:77–83. https://doi.org/10.1016/j.nicl.2014.06.005.

Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, et al.
Measuring functional connectivity using MEG: methodology and comparison
with fcMRI. Neuroimage 2011a;56:1082–104. https://doi.org/10.1016/j.
neuroimage.2011.02.054.

Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, et al.
Investigating the electrophysiological basis of resting state networks using
magnetoencephalography. PNAS 2011b;108:16783–8. https://doi.org/10.1073/
pnas.1112685108.

Bruña R. Simultaneous MEG/EEG recordings for the study of source domain brain
connectivity in neurodegenerative diseases (Ph.D.). Universidad Politécnica de
Madrid; 2019.

Bruña R, Maestú F, Pereda E. Phase locking value revisited: teaching new tricks to an
old dog. J Neural Eng 2018;15. https://doi.org/10.1088/1741-2552/aacfe4
056011.

Bruña R, Pereda E. Multivariate extension of phase synchronization improves the
estimation of region-to-region source space functional connectivity. Brain
Multiphys 2021;2. https://doi.org/10.1016/j.brain.2021.100021 100021.

Brunner C, Billinger M, Seeber M, Mullen TR, Makeig S. Volume Conduction
Influences Scalp-Based Connectivity Estimates. Front Comput Neurosci
2016;10:121. https://doi.org/10.3389/fncom.2016.00121.

Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents–
EEG, ECoG, LFP and spikes. Nat Rev Neurosci 2012;13:407–20. https://doi.org/
10.1038/nrn3241.

Céspedes-Villar Y, Martinez-Vargas JD, Castellanos-Dominguez G. Influence of
Patient-Specific Head Modeling on EEG Source Imaging. Comput Math Methods
Med 2020;2020:5076865. https://doi.org/10.1155/2020/5076865.

Cohen MX. Where Does EEG Come From and What Does It Mean? Trends Neurosci
2017;40:208–18. https://doi.org/10.1016/j.tins.2017.02.004.

Colclough GL, Woolrich MW, Tewarie PK, Brookes MJ, Quinn AJ, Smith SM. How
reliable are MEG resting-state connectivity metrics? Neuroimage
2016;138:284–93. https://doi.org/10.1016/j.neuroimage.2016.05.070.
15
Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, et al. Dynamic
statistical parametric mapping: combining fMRI and MEG for high-resolution
imaging of cortical activity. Neuron 2000;26:55–67. https://doi.org/10.1016/
s0896-6273(00)81138-1.

Douw L, Nieboer D, Stam CJ, Tewarie P, Hillebrand A. Consistency of
magnetoencephalographic functional connectivity and network
reconstruction using a template versus native MRI for co-registration. Hum
Brain Mapp 2018;39:104–19. https://doi.org/10.1002/hbm.23827.

Fornito A, Zalesky A, Pantelis C, Bullmore ET. Schizophrenia, neuroimaging and
connectomics. Neuroimage 2012;62:2296–314. https://doi.org/10.1016/j.
neuroimage.2011.12.090.

Freeman WJ, Holmes MD, Burke BC, Vanhatalo S. Spatial spectra of scalp EEG and
EMG from awake humans. Clin Neurophysiol 2003;114:1053–68. https://doi.
org/10.1016/s1388-2457(03)00045-2.

Garcés P, Martín-Buro MC, Maestú F. Quantifying the Test-Retest Reliability of
Magnetoencephalography Resting-State Functional Connectivity. Brain Connect
2016;6:448–60. https://doi.org/10.1089/brain.2015.0416.

Garrison KA, Scheinost D, Finn ES, Shen X, Constable RT. The (in)stability of
functional brain network measures across thresholds. Neuroimage
2015;118:651–61. https://doi.org/10.1016/j.neuroimage.2015.05.046.

Gramfort A, Papadopoulo T, Olivi E, Clerc M. OpenMEEG: opensource software for
quasistatic bioelectromagnetics. Biomed Eng Online 2010;9:45. https://doi.org/
10.1186/1475-925X-9-45.

Hämäläinen MS, Ilmoniemi RJ. Interpreting magnetic fields of the brain: minimum
norm estimates. Med Biol Eng Compu 1994;32:35–42. https://doi.org/10.1007/
BF02512476.

Hassan M, Chaton L, Benquet P, Delval A, Leroy C, Plomhause L, et al. Functional
connectivity disruptions correlate with cognitive phenotypes in Parkinson’s
disease. Neuroimage Clin 2017;14:591–601. https://doi.org/10.1016/j.
nicl.2017.03.002.

Hassan M, Wendling F. Electroencephalography Source Connectivity: Aiming for
High Resolution of Brain Networks in Time and Space. IEEE Signal Process Mag
2018;35:81–96. https://doi.org/10.1109/MSP.2017.2777518.

Hatlestad-Hall C, Bruña R, Erichsen A, Andersson V, Syvertsen MR, Skogan AH, et al.
The organization of functional neurocognitive networks in focal epilepsy
correlates with domain-specific cognitive performance. J Neurosci Res
2021a;99:2669–87. https://doi.org/10.1002/jnr.24896.

Hatlestad-Hall C, Bruña R, Syvertsen MR, Erichsen A, Andersson V, Vecchio F, et al.
Source-level EEG and graph theory reveal widespread functional network
alterations in focal epilepsy. Clin Neurophysiol 2021b;132:1663–76. https://
doi.org/10.1016/j.clinph.2021.04.008.

He B, Sohrabpour A, Brown E, Liu Z. Electrophysiological Source Imaging: A
Noninvasive Window to Brain Dynamics. Annu Rev Biomed Eng
2018;20:171–96. https://doi.org/10.1146/annurev-bioeng-062117-120853.

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation
structure of spontaneous oscillatory activity. Nat Neurosci 2012;15:884–90.
https://doi.org/10.1038/nn.3101.

Homölle S, Oostenveld R. Using a structured-light 3D scanner to improve EEG
source modeling with more accurate electrode positions. J Neurosci Methods
2019;326. https://doi.org/10.1016/j.jneumeth.2019.108378 108378.

Humphries MD, Gurney K. Network ‘‘small-world-ness”: a quantitative method for
determining canonical network equivalence. PLoS One 2008;3:e0002051.
https://doi.org/10.1371/journal.pone.0002051.

Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation
Coefficients for Reliability Research. J Chiropr Med 2016;15:155–63. https://doi.
org/10.1016/j.jcm.2016.02.012.

Kovach CK. A Biased Look at Phase Locking: Brief Critical Review and Proposed
Remedy. IEEE Trans Signal Process 2017;65:4468–80. https://doi.org/10.1109/
TSP.2017.2711517.

Kuhnke N, Schwind J, Dümpelmann M, Mader M, Schulze-Bonhage A, Jacobs J. High
Frequency Oscillations in the Ripple Band (80–250 Hz) in Scalp EEG: Higher
Density of Electrodes Allows for Better Localization of the Seizure Onset Zone.
Brain Topogr 2018;31:1059–72. https://doi.org/10.1007/s10548-018-0658-3.

Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain
signals. Hum Brain Mapp 1999;8:194–208. https://doi.org/10.1002/(sici)1097-
0193(1999)8:4<194::aid-hbm4>3.0.co;2-c.

Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a
practical primer for t-tests and ANOVAs. Front Psychol 2013;4:863. https://doi.
org/10.3389/fpsyg.2013.00863.

Langer N, Pedroni A, Gianotti LRR, Hänggi J, Knoch D, Jäncke L. Functional brain
network efficiency predicts intelligence. Hum Brain Mapp 2012;33:1393–406.
https://doi.org/10.1002/hbm.21297.

Lantz G, Grave de Peralta R, Spinelli L, Seeck M, Michel CM. Epileptic source
localization with high density EEG: how many electrodes are needed? Clin
Neurophysiol 2003;114:63–9. https://doi.org/10.1016/s1388-2457(02)00337-
1.

Lee KM, Lee J, Chung CY, Ahn S, Sung KH, Kim TW, et al. Pitfalls and important issues
in testing reliability using intraclass correlation coefficients in orthopaedic
research. Clin Orthop Surg 2012;4:149–55. https://doi.org/
10.4055/cios.2012.4.2.149.

Leung CC, Chau HF. Weighted assortative and disassortative networks model.
Physica A 2007;378:591–602. https://doi.org/10.1016/j.physa.2006.12.022.

Lin F-H, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS.
Assessing and improving the spatial accuracy in MEG source localization by
depth-weighted minimum-norm estimates. Neuroimage 2006;31:160–71.
https://doi.org/10.1016/j.neuroimage.2005.11.054.

https://doi.org/10.1016/j.clinph.2023.03.002
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.clinph.2021.03.040
https://doi.org/10.1016/j.neuroimage.2010.09.006
https://doi.org/10.1177/1073858416667720
http://refhub.elsevier.com/S1388-2457(23)00228-6/h0025
http://refhub.elsevier.com/S1388-2457(23)00228-6/h0025
https://doi.org/10.1016/j.nicl.2014.06.005
https://doi.org/10.1016/j.neuroimage.2011.02.054
https://doi.org/10.1016/j.neuroimage.2011.02.054
https://doi.org/10.1073/pnas.1112685108
https://doi.org/10.1073/pnas.1112685108
https://doi.org/10.1088/1741-2552/aacfe4
https://doi.org/10.1016/j.brain.2021.100021
https://doi.org/10.3389/fncom.2016.00121
https://doi.org/10.1038/nrn3241
https://doi.org/10.1038/nrn3241
https://doi.org/10.1155/2020/5076865
https://doi.org/10.1016/j.tins.2017.02.004
https://doi.org/10.1016/j.neuroimage.2016.05.070
https://doi.org/10.1016/s0896-6273(00)81138-1
https://doi.org/10.1016/s0896-6273(00)81138-1
https://doi.org/10.1002/hbm.23827
https://doi.org/10.1016/j.neuroimage.2011.12.090
https://doi.org/10.1016/j.neuroimage.2011.12.090
https://doi.org/10.1016/s1388-2457(03)00045-2
https://doi.org/10.1016/s1388-2457(03)00045-2
https://doi.org/10.1089/brain.2015.0416
https://doi.org/10.1016/j.neuroimage.2015.05.046
https://doi.org/10.1186/1475-925X-9-45
https://doi.org/10.1186/1475-925X-9-45
https://doi.org/10.1007/BF02512476
https://doi.org/10.1007/BF02512476
https://doi.org/10.1016/j.nicl.2017.03.002
https://doi.org/10.1016/j.nicl.2017.03.002
https://doi.org/10.1109/MSP.2017.2777518
https://doi.org/10.1002/jnr.24896
https://doi.org/10.1016/j.clinph.2021.04.008
https://doi.org/10.1016/j.clinph.2021.04.008
https://doi.org/10.1146/annurev-bioeng-062117-120853
https://doi.org/10.1038/nn.3101
https://doi.org/10.1016/j.jneumeth.2019.108378
https://doi.org/10.1371/journal.pone.0002051
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1109/TSP.2017.2711517
https://doi.org/10.1109/TSP.2017.2711517
https://doi.org/10.1007/s10548-018-0658-3
https://doi.org/10.1002/(sici)1097-0193(1999)8:4&lt;194::aid-hbm4&gt;3.0.co;2-c
https://doi.org/10.1002/(sici)1097-0193(1999)8:4&lt;194::aid-hbm4&gt;3.0.co;2-c
https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.1002/hbm.21297
https://doi.org/10.1016/s1388-2457(02)00337-1
https://doi.org/10.1016/s1388-2457(02)00337-1
https://doi.org/10.4055/cios.2012.4.2.149
https://doi.org/10.4055/cios.2012.4.2.149
https://doi.org/10.1016/j.physa.2006.12.022
https://doi.org/10.1016/j.neuroimage.2005.11.054


C. Hatlestad-Hall, R. Bruña, M. Liljeström et al. Clinical Neurophysiology 150 (2023) 1–16
Liu Q, Ganzetti M, Wenderoth N, Mantini D. Detecting Large-Scale Brain Networks
Using EEG: Impact of Electrode Density, Head Modeling and Source
Localization. Front Neuroinf 2018;12:4. https://doi.org/10.3389/
fninf.2018.00004.

McGraw KO, Wong SP. Forming inferences about some intraclass correlation
coefficients. Psychol Methods 1996;1:30–46. https://doi.org/10.1037/1082-
989x.1.1.30.

Michel CM, Brunet D. EEG Source Imaging: A Practical Review of the Analysis Steps.
Front Neurol 2019;10:325. https://doi.org/10.3389/fneur.2019.00325.

Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R. EEG
source imaging. Clin Neurophysiol 2004;115:2195–222. https://doi.org/
10.1016/j.clinph.2004.06.001.

Miraglia F, Tomino C, Vecchio F, Alù F, Orticoni A, Judica E, et al. Assessing the
dependence of the number of EEG channels in the brain networks’ modulations.
Brain Res Bull 2021;167:33–6. https://doi.org/10.1016/j.
brainresbull.2020.11.014.

Newman MEJ. Mathematics of Networks. In: The New Palgrave Dictionary of
Economics. London: Palgrave Macmillan; 2008. https://doi.org/10.1057/978-1-
349-95121-5_2565-1.

Newman MEJ. Assortative mixing in networks. Phys Rev Lett 2002;89. https://doi.
org/10.1103/PhysRevLett.89.208701 208701.

Nguyen-Danse DA, Singaravelu S, Chauvigné LAS, Mottaz A, Allaman L, Guggisberg
AG. Feasibility of Reconstructing Source Functional Connectivity with Low-
Density EEG. Brain Topogr 2021;34:709–19. https://doi.org/10.1007/s10548-
021-00866-w.

Oostenveld R, Praamstra P. The five percent electrode system for high-resolution
EEG and ERP measurements. Clin Neurophysiol 2001;112:713–9. https://doi.
org/10.1016/s1388-2457(00)00527-7.

Pascual-Marqui RD. Discrete, 3D distributed, linear imaging methods of electric
neuronal activity. Part 1: exact, zero error localization. arXiv [math-ph]; 2007.

Pascual-Marqui RD. Standardized low-resolution brain electromagnetic
tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol
2002;24 Suppl D:5–12.

Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic
tomography: a new method for localizing electrical activity in the brain. Int J
Psychophysiol 1994;18:49–65. https://doi.org/10.1016/0167-8760(84)90014-
x.

Petrov Y, Nador J, Hughes C, Tran S, Yavuzcetin O, Sridhar S. Ultra-dense EEG
sampling results in two-fold increase of functional brain information.
Neuroimage 2014;90:140–5. https://doi.org/10.1016/j.
neuroimage.2013.12.041.

Rodríguez-Cruces R, Bernhardt BC, Concha L. Multidimensional associations
between cognition and connectome organization in temporal lobe epilepsy.
Neuroimage 2020;213. https://doi.org/10.1016/j.neuroimage.2020.116706
116706.

Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators.
Phys Rev Lett 1996;76:1804–7. https://doi.org/10.1103/PhysRevLett.76.1804.

Rossini PM, Di Iorio R, Bentivoglio M, Bertini G, Ferreri F, Gerloff C, et al. Methods for
analysis of brain connectivity: An IFCN-sponsored review. Clin Neurophysiol
2019;130:1833–58. https://doi.org/10.1016/j.clinph.2019.06.006.

Rossini PM, Di Iorio R, Vecchio F, Anfossi M, Babiloni C, Bozzali M, et al. Early
diagnosis of Alzheimer’s disease: the role of biomarkers including advanced
EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clin
Neurophysiol 2020;131:1287–310. https://doi.org/10.1016/
j.clinph.2020.03.003.

Rubinov M, Sporns O. Weight-conserving characterization of complex functional
brain networks. Neuroimage 2011;56:2068–79. https://doi.org/10.1016/j.
neuroimage.2011.03.069.

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage 2010;52:1059–69. https://doi.org/10.1016/j.
neuroimage.2009.10.003.

Schoffelen J-M, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain
Mapp 2009;30:1857–65. https://doi.org/10.1002/hbm.20745.

Seeber M, Cantonas L-M, Hoevels M, Sesia T, Visser-Vandewalle V, Michel CM.
Subcortical electrophysiological activity is detectable with high-density EEG
source imaging. Nat Commun 2019;10:753. https://doi.org/10.1038/s41467-
019-08725-w.
16
Seeck M, Koessler L, Bast T, Leijten F, Michel C, Baumgartner C, et al. The
standardized EEG electrode array of the IFCN. Clin Neurophysiol
2017;128:2070–7. https://doi.org/10.1016/j.clinph.2017.06.254.

Siems M, Siegel M. Dissociated neuronal phase- and amplitude-coupling patterns in
the human brain. Neuroimage 2020;209. https://doi.org/10.1016/j.
neuroimage.2020.116538 116538.

Sohrabpour A, Lu Y, Kankirawatana P, Blount J, Kim H, He B. Effect of EEG electrode
number on epileptic source localization in pediatric patients. Clin Neurophysiol
2015;126:472–80. https://doi.org/10.1016/j.clinph.2014.05.038.

Song J, Davey C, Poulsen C, Luu P, Turovets S, Anderson E, et al. EEG source
localization: Sensor density and head surface coverage. J Neurosci Methods
2015;256:9–21. https://doi.org/10.1016/j.jneumeth.2015.08.015.

Srinivasan R, Tucker DM, Murias M. Estimating the spatial Nyquist of the human
EEG. Behav Res Methods Instrum Comput 1998;30:8–19. https://doi.org/
10.3758/BF03209412.

Staljanssens W, Strobbe G, Van Holen R, Birot G, Gschwind M, Seeck M, et al. Seizure
Onset Zone Localization from Ictal High-Density EEG in Refractory Focal
Epilepsy. Brain Topogr 2017a;30:257–71. https://doi.org/10.1007/s10548-016-
0537-8.

Staljanssens W, Strobbe G, Van Holen R, Keereman V, Gadeyne S, Carrette E, et al.
EEG source connectivity to localize the seizure onset zone in patients with drug
resistant epilepsy. Neuroimage Clin 2017b;16:689–98. https://doi.org/10.1016/
j.nicl.2017.09.011.

Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci
2014;15:683–95. https://doi.org/10.1038/nrn3801.

Stam CJ, Nolte G, Daffertshofer A. Phase lag index: assessment of functional
connectivity from multi channel EEG and MEG with diminished bias from
common sources. Hum Brain Mapp 2007;28:1178–93. https://doi.org/10.1002/
hbm.20346.

Stam CJ, Tewarie P, Van Dellen E, van Straaten ECW, Hillebrand A, Van Mieghem P.
The trees and the forest: Characterization of complex brain networks with
minimum spanning trees. Int J Psychophysiol 2014;92:129–38. https://doi.org/
10.1016/j.ijpsycho.2014.04.001.

Stoyell SM, Wilmskoetter J, Dobrota M-A, Chinappen DM, Bonilha L, Mintz M, et al.
High-Density EEG in Current Clinical Practice and Opportunities for the Future. J
Clin Neurophysiol 2021;38:112–23. https://doi.org/10.1097/
WNP.0000000000000807.

Taberna GA, Marino M, Ganzetti M, Mantini D. Spatial localization of EEG electrodes
using 3D scanning. J Neural Eng 2019;16. https://doi.org/10.1088/1741-2552/
aafdd1 026020.

Tewarie P, van Dellen E, Hillebrand A, Stam CJ. The minimum spanning tree: an
unbiased method for brain network analysis. Neuroimage 2015;104:177–88.
https://doi.org/10.1016/j.neuroimage.2014.10.015.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N,
et al. Automated anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain. Neuroimage
2002;15:273–89. https://doi.org/10.1006/nimg.2001.0978.

van Diessen E, Numan T, van Dellen E, van der Kooi AW, Boersma M, Hofman D,
et al. Opportunities and methodological challenges in EEG and MEG resting
state functional brain network research. Clin Neurophysiol 2015;126:1468–81.
https://doi.org/10.1016/j.clinph.2014.11.018.

van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. Localization of brain
electrical activity via linearly constrained minimum variance spatial filtering.
IEEE Trans Biomed Eng 1997;44:867–80. https://doi.org/10.1109/10.623056.

van Wijk BCM, Stam CJ, Daffertshofer A. Comparing brain networks of different size
and connectivity density using graph theory. PLoS One 2010;5:e13701. https://
doi.org/10.1371/journal.pone.0013701.

Vlooswijk MCG, Vaessen MJ, Jansen JFA, de Krom MCFTM, Majoie HJM, Hofman
PAM, et al. Loss of network efficiency associated with cognitive decline in
chronic epilepsy. Neurology 2011;77:938–44. https://doi.org/10.1212/
WNL.0b013e31822cfc2f.

Vorwerk J, Cho J-H, Rampp S, Hamer H, Knösche TR, Wolters CH. A guideline for
head volume conductor modeling in EEG and MEG. Neuroimage
2014;100:590–607. https://doi.org/10.1016/j.neuroimage.2014.06.040.

Watts DJ, Strogatz SH. Collective dynamics of ‘‘small-world” networks. Nature
1998;393:440–2. https://doi.org/10.1038/30918.

https://doi.org/10.3389/fninf.2018.00004
https://doi.org/10.3389/fninf.2018.00004
https://doi.org/10.1037/1082-989x.1.1.30
https://doi.org/10.1037/1082-989x.1.1.30
https://doi.org/10.3389/fneur.2019.00325
https://doi.org/10.1016/j.clinph.2004.06.001
https://doi.org/10.1016/j.clinph.2004.06.001
https://doi.org/10.1016/j.brainresbull.2020.11.014
https://doi.org/10.1016/j.brainresbull.2020.11.014
https://doi.org/10.1057/978-1-349-95121-5_2565-1
https://doi.org/10.1057/978-1-349-95121-5_2565-1
https://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1007/s10548-021-00866-w
https://doi.org/10.1007/s10548-021-00866-w
https://doi.org/10.1016/s1388-2457(00)00527-7
https://doi.org/10.1016/s1388-2457(00)00527-7
http://refhub.elsevier.com/S1388-2457(23)00228-6/h0265
http://refhub.elsevier.com/S1388-2457(23)00228-6/h0265
http://refhub.elsevier.com/S1388-2457(23)00228-6/h0265
https://doi.org/10.1016/0167-8760(84)90014-x
https://doi.org/10.1016/0167-8760(84)90014-x
https://doi.org/10.1016/j.neuroimage.2013.12.041
https://doi.org/10.1016/j.neuroimage.2013.12.041
https://doi.org/10.1016/j.neuroimage.2020.116706
https://doi.org/10.1103/PhysRevLett.76.1804
https://doi.org/10.1016/j.clinph.2019.06.006
https://doi.org/10.1016/j.clinph.2020.03.003
https://doi.org/10.1016/j.clinph.2020.03.003
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1002/hbm.20745
https://doi.org/10.1038/s41467-019-08725-w
https://doi.org/10.1038/s41467-019-08725-w
https://doi.org/10.1016/j.clinph.2017.06.254
https://doi.org/10.1016/j.neuroimage.2020.116538
https://doi.org/10.1016/j.neuroimage.2020.116538
https://doi.org/10.1016/j.clinph.2014.05.038
https://doi.org/10.1016/j.jneumeth.2015.08.015
https://doi.org/10.3758/BF03209412
https://doi.org/10.3758/BF03209412
https://doi.org/10.1007/s10548-016-0537-8
https://doi.org/10.1007/s10548-016-0537-8
https://doi.org/10.1016/j.nicl.2017.09.011
https://doi.org/10.1016/j.nicl.2017.09.011
https://doi.org/10.1038/nrn3801
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1016/j.ijpsycho.2014.04.001
https://doi.org/10.1016/j.ijpsycho.2014.04.001
https://doi.org/10.1097/WNP.0000000000000807
https://doi.org/10.1097/WNP.0000000000000807
https://doi.org/10.1088/1741-2552/aafdd1
https://doi.org/10.1088/1741-2552/aafdd1
https://doi.org/10.1016/j.neuroimage.2014.10.015
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.clinph.2014.11.018
https://doi.org/10.1109/10.623056
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1212/WNL.0b013e31822cfc2f
https://doi.org/10.1212/WNL.0b013e31822cfc2f
https://doi.org/10.1016/j.neuroimage.2014.06.040
https://doi.org/10.1038/30918

	Reliable evaluation of functional connectivity and graph theory measures in source-level EEG: How many electrodes are enough?
	Introduction
	Methods
	EEG data and spatial subsampling
	Source reconstruction
	Forward modelling

	Functional connectivity
	Phase-locking value
	Amplitude envelope correlation
	Leakage corrections
	Measures calculations

	Functional network properties
	Functional network construction
	Graph theory metrics

	Reproducibility of graph theory metrics across montages
	Correlation of graph theory metrics between the baseline and subsampled EEG montages
	Relative effect of the inverse solution and electrode density on graph metrics
	Reproducibility of nodal functional connectivity across montages
	Statistics and software
	Ethical approval
	Participant informed consent
	Data availability

	Results
	Graph theory metrics
	Reproducibility of graph theory metrics across EEG electrode montages and source reconstruction methods
	Relative effect of the source reconstruction method and electrode density on graph metrics
	Reproducibility of nodal functional connectivity across different electrode densities

	Discussion
	Consistency across EEG electrode densities
	Graph theory metrics across electrode densities
	Source reconstruction methods and functional connectivity measures
	Clinical relevance
	Limitations
	Conclusion

	Competing interests
	Acknowledgements
	Supplementary material
	References


