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Brain criticality predicts individual levels of
inter-areal synchronization in human
electrophysiological data

Marco Fuscà 1,2,10, Felix Siebenhühner 2,3,10, Sheng H. Wang 2,4,5,6,10,
Vladislav Myrov4, Gabriele Arnulfo 2,7, Lino Nobili 8,9, J. Matias Palva1,2,4,11 &
Satu Palva 1,2,11

Neuronal oscillations and their synchronization between brain areas are fun-
damental for healthy brain function. Yet, synchronization levels exhibit large
inter-individual variability that is associatedwith behavioral variability.We test
whether individual synchronization levels are predicted by individual brain
states along an extended regime of critical-like dynamics – the Griffiths phase
(GP). We use computational modelling to assess how synchronization is
dependent on brain criticality indexed by long-range temporal correlations
(LRTCs). We analyze LRTCs and synchronization of oscillations from resting-
state magnetoencephalography and stereo-electroencephalography data.
Synchronization and LRTCs are both positively linearly and quadratically
correlated among healthy subjects, while in epileptogenic areas they are
negatively linearly correlated. These results show that variability in synchro-
nization levels is explained by the individual position along theGPwith healthy
brain areas operating in its subcritical and epileptogenic areas in its super-
critical side.We suggest that the GP is fundamental for brain function allowing
individual variability while retaining functional advantages of criticality.

Transient, long-range synchronization of neuronal oscillations reg-
ulates neuronal processing and communication in large-scale neuronal
circuits, which is essential for cognitive functions and behavior1–6.
Healthy brains operate with moderate levels of synchronization, while
inadequate or excessive synchronization is an endophenotype in sev-
eral brain disorders and contributes to the functional deficits
therein7–9. Even among healthy subjects, however, there is consider-
able variability in mean synchronization levels of large-scale brain
networks across individuals, which is associated with interindividual
variability in cognitive performance10–16.

The framework of brain criticality offers an approach to under-
standing variability in brain dynamics. The ‘critical brain’ hypothesis
posits that neuronal systems in vivo have an operating point at the
critical transition between subcritical and supercritical phases in the
system’s state space17–20 (Fig. 1a). Such anoperatingpoint at the edgeof
chaos21,22 would yield as observables emergent synchronization
dynamics with large variance and scale-free and long-range spatio-
temporal correlations23,24 (see Fig. 1a). Critical dynamics are char-
acterized by a balance between attenuating and amplifying activity
propagation and moderate levels of synchronization that are
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functionally neither inadequate nor excessive2,22,25,26. Operation at cri-
ticality endows a system with many functional benefits, such as max-
imal dynamic range, information transmission, and representational
capacity, all of which are instrumental to healthy brain function27,28.
The operating point (i.e., the system’s position in state space) is

dependent on the system’s position in the parameter space (see
Fig. 1a). In neuronal systems, the excitation-inhibition (E/I) ratio is
thought to be the primary control parameter29 so that perfectly
balanced E/I leads to operation at the critical point. Excessive inhibi-
tion leads to operation in the subcritical regime where neuronal

ca b

O
rder

State Space

Parameter
Space

Observables

Subcritical

Individual 
operating
point

Phase
transition

“Realistic”

“Homogenous”

Super-
critical

Control parameter (nK)

SD
DF

A
<D

FA
ex

p.
>

SD
PL

V

0.8 1 1.2

0

Realistic
Uniform

<P
LV

>

0.4

0.8

1

0.6

0.2

0

0.04

0.7

0.6

0.75

0.65

0.55

0.04
0.02

<PLV>

<D
FA

 e
xp

.>

c1

0.6

0.65

0.7

0.75

0.05 0.15 0.25 0.5 0.5 0.7

c2 c3

Recording Methods

MEG SEEG

Parcels/Contacts

Pa
rc

el
s/

C
on

ta
ct

s

Synchronization

700Vis SM   DA SV Lim FPDMN 

Parcellation Coverage

d e

N Contacts0   

Am
pl

itu
de

Am
pl

itu
de

Ph
as

e

200 msPh
as

e
di

ff. π

-π

π

-π

5 10 50
Window size (s)

Am
pl

.f
lu

ct
ua

tio
ns

LRTCs

Realistic
Uniform

DFA exp. = 0.5

3 20

Phase difference
distribu�on (10 min)

Broadband

10 Hz

PLV = .066
wPLI = .038

<D
FA

 e
xp

.>

1

0

0.5
0.6

0.55

0.65

0.7

<PLV>

nK

PLV
DFA exp.

c1
c2

c3

1 1.2 1.40.80.60.4

Subcritical SupercriticalSubcritical Supercritical

Fig. 1 | Study schematics and modeling the co-emergence of LRTCs and inter-
areal synchronization. a Concept of critical-like brain dynamics. The state-space
of critical dynamics emerges from a position in parameter space, leading to
observables such as synchronization and long-range temporal correlations
(LRTCs). b Computational modeling of critical dynamics. Hierarchical Kuramoto
models with either uniform or realistic heterogenous connection weights for inter-
node coupling were used to simulate classical criticality or Griffiths phase (GP).
Mean phase-locking value (PLV) and scaling exponents from detrended fluctuation
analysis (DFA, indexing LRTCs) are shown (with SD) as a function of the normalized
control parameter (nK), the coupling strength between oscillators within each
node. Themodel shows an exponential increase in PLVwith uniformweights, and a
nearly linear increase with realistic connection weights. DFA exponents peak at the
critical pointwherenK = 1, but the peak iswider and the standarddeviation larger in
the realistic GPmodel. cThedifferential relationships ofmeanPLV andDFA (shown
with SD) of nK for realistic connection weights simulating GP. PLV increases
monotonically with K, whereas the DFA exponent peaks around nK = 1. c1–c3
Scatterplots of PLV and DFA exponent from the subcritical, critical, and

supercritical sides, respectively. c1 In the subcritical side, the relationship between
PLV and DFA is well-described with a positive linear fit (green line). c2 Around the
critical point, the relationship of PLV and DFA is better described with a concave
quadratic fit (dashed blue line) than a linear fit (solid). c3 In the supercritical side,
the relationship is best described with a negative linear fit (magenta line). d Left:
Magnetoencephalography (MEG) data was source-reconstructed and parcellated
into Schaefer atlas. Right: Example of stereo-encephalography (SEEG) intracranial
electrode layout (top) and cohort-wide contact coverage per functional subsystem
in Schaefer atlas (bottom). e Time series data (top left) were filtered to obtain
narrow-band amplitudes (2nd–3rd rows), phase time series (4th row), and phase
difference time series (bottom row). Amplitude time series were used to compute
DFA exponents (top right). Pairwise phase synchronization with PLV or weighted
phase-lag index (wPLI) between all brain areas (bottom right) was computed from
phase difference time series. Source data for panels b,c is provided in the source
data file. Functional subsystems: Vis visual, DA dorsal attention, SM somatomotor,
SV salience and ventral attention, DMN default mode network, Lim limbic, FP
frontoparietal.
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signaling is attenuated, and spatiotemporal correlations are exclu-
sively short-ranged. Excessive excitation leads to supercritical
dynamics with escalating, self-amplifying neuronal activity that pro-
pagates across the system21. As a hallmark of brain criticality, in elec-
trophysiological data, local oscillations also demonstrate scale-free
long-range temporal correlations (LRTCs), i.e., power-law auto-
correlations in amplitude fluctuations across lags of hundreds of
seconds30–33 and neuronal avalanches that are power-law scaled cas-
cades of neuronal activity propagating across the neocortex in both
microscopic34 and macroscopic32,33,35 scales of brain networks.

However, despite extensive lines of research on inter-areal syn-
chronization and critical brain dynamics, there is only sparse evidence
linking the strength of inter-areal correlations with individual critical
dynamics in the humanbrain36 and no experimental papers addressing
inter-areal synchronization of oscillations in this context. Moreover,
recent theoretical studies suggest that because of diverse structural
and mechanistic heterogeneities, neuronal systems are unlikely to
operate at a singular critical point37,38. Instead, neuronal systems have
been proposed to operate in an extended regime of critical-like
dynamics known as the Griffiths phase (GP)38–40.

A GP is characterized by power laws extending over broad regions
in parameter space and thus the stretching of a critical point into a
wider critical regime (Fig. 1b). In modeling studies, the intrinsic het-
erogeneity in the white-matter structural connectivity linking human
brain areas lead to the emergence of a GP38,39. While there is only little
experimental brain data to support this hypothesis, it is in line with
findings showing that different brain systems exhibit partially inde-
pendent operating points16. The notion of GP in brain dynamics thus
implies that instead of there being a single critical point that yields
optimal brain functioning, there exists a wider range of possible
operating points, all of which yield critical-like dynamics and con-
sequential functional benefits.

Here, we build on the framework that healthy brains operate in an
extended critical regime, the GP, and posit that the operating points
would vary near a single critical point both across individuals and
across neuronal subsystems within individuals. We thus hypothesized
that individual variability in the operating points within the critical
regime would predict the individual co-variability in the synchroniza-
tion levels and LRTCs (Fig. 1c). If healthy brains operate in a mostly
subcritical regime as suggested previously41, the individual levels of
inter-areal oscillatory synchronization should be positively correlated
with LRTCs, both across individuals as well as across brain areas. We
probed both meso- and macro-scale ongoing neuronal dynamics by
using invasive intra-cerebral stereo-EEG (SEEG) and non-invasive
magnetoencephalography (MEG) recordings, respectively, and quan-
tified the strength of LRTCs and inter-areal phase synchronization in
large cohorts of subjects.

Results
We first assessed the emergence of critical dynamics and stretching of
the critical point into a Griffiths phase (GP) in a generative model of
synchronization dynamics (see Fig. 1a, b). The model was then used to
derive predictions about the correlations between LRTCs and long-
range synchronization andhowthese correlations aredependenton the
control parameters (see Fig. 1c) that regulate the operating point in
state space (Fig. 1a). Second, we analyzed resting-state brain activity
recorded from healthy subjects with non-invasive magnetoencephalo-
graphy (MEG) and from subjects with drug-resistant epilepsy with
intracranial stereo-electroencephalography (SEEG; Fig. 1d). We then
assessed the presence of LRTCs in amplitude fluctuations using
detrended fluctuation analysis (DFA) within all regions and estimated
thepairwise phase synchronizationbetweenall cortical regions (Fig. 1e).
Lastly, we estimatedwhether the strength of synchronization across the
whole-brain and individual cortical regions were correlated with DFA
exponents across individuals in line with modeling predictions.

Computational modeling reveals the co-variability of neuronal
synchronization and LRTCs in GP
To assess how large-scale synchronization and local LRTCs depend on
the operating point, we used a hierarchical variant15,42 of the Kuramoto
model43 to simulate emergent local and large-scale dynamics. The
hierarchical model comprised 400 nodes corresponding to the brain
regions of the Schaefer atlas, with each node modeled as a Kuramoto
model of 500 all-to-all connected oscillators. A within-node control
parameter K was used to scale the uniform, all-to-all coupling among
the oscillators in each node, while an independent inter-node control
parameter L scaled the structural connectivity between the nodes. We
first simulated both classical brain criticality and critical-like GP by
varying the heterogeneity of structural connectivity (see Parameter
space in Fig. 1a). To this end, for classical brain criticality, all nodes
were coupledwith uniform connectivity, while for theGP, the coupling
between nodes was defined with the realistic and highly heterogenous
structural connectome of the human cerebral white-matter tracts. We
assessed inter-areal synchrony using the phase-locking value (PLV) and
the LRTCs using the scaling exponent obtained with detrend fluctua-
tion analysis (DFA) across a varying K value with ten virtual subjects
with random structural variability for each K (see Methods).

Both uniform and realistic structural connectomes gave rise to a
state spacecomprising subcritical (low synchrony,measuredwith PLV)
and supercritical (high synchrony) phases with a smooth second-order
phase transition in between with emergent power-law dynamics
(strong LRTCs, measured with DFA) peaking at this transition (Fig. 1b),
in line with a large body of prior findings15,44. For realistic structural
connectivity, however, the transition was significantly wider than for
the uniform, as depicted in the schematic Fig. 1a and reproducing the
fundamental prior findings37. Note that because of the limited size of
the model and structural variability, the uniform condition does not
exhibit a point-like critical transition but a narrow regime. Importantly,
while the structural variability among the virtual subjects was identical
between realistic and uniform conditions, the resulting variability (see
SD in Fig. 2b) in measures of dynamics was much greater for realistic
connectivity, implying that the GP not only extends the range of
operating points that yield critical-like dynamics but also amplifies the
impact of individual structural variability on emergent dynamics.

We then used three cohorts of the virtual subjects to assess how
long-range synchrony and LRTCs covary across the extended critical
regime (Fig. 1c): for subjects in the subcritical side of a GP, the DFA
exponents and PLV are positively correlated (c1), while this correlation
is negative for subjects in the supercritical side (c3). Finally, a cohort of
subjects at the peakof aGPwill exhibit a negative quadratic correlation
(inverted-U shape) between PLV and DFA. This modeling work thus
shows both how structural heterogeneities stretch the critical point
into an extended regime of critical-like dynamics and how the corre-
lations of synchronization and LRTCs can be leveraged to infer the
range of operating points exhibited by cohorts of subjects.

Synchronization and LRTCs are positively correlated across
individuals in MEG and SEEG
To test empirically this hypothesis and model predictions on indivi-
dual brain dynamics in MEG and SEEG resting-state recordings (see
Fig. 1d), we quantified LRTCs with DFA30 and pairwise, all-to-all syn-
chronizationwith theweightedphase-lag index (wPLI, inMEG) andPLV
(in SEEG) (see Fig. 1e). We first assessed narrow-band oscillatory brain
dynamics at the whole-brain level (see Methods). We used graph
strength (GS, average of all pairwise synchronization estimates) to
assess the individual mean level of global synchronization, and the
mean DFA scaling exponents across the cortical surface to assess
global LRTCs. In MEG (N = 192 sessions from 52 subjects), the grand-
average graph strength GS peaked in the alpha frequency band
(8–14Hz), while in SEEG (N = 57 patients, one session each) GS peaked
slightly lower in the theta-alpha bands (range 5–10Hz; Fig. 2a), in line
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with previous studies showing a shift from the alpha to theta in
SEEG42,45. In MEG, the grand-average DFA showed a well-delineated
alpha-band peak, as seen in GS above, and a broader gamma-band
(50–100Hz) peak as well. In SEEG, the DFA peaked in the theta-alpha
range (5–10Hz) as well as in the delta-band (2–4Hz) and exhibited a
monotonic near-linear increase in gamma frequencies (Fig. 2a). Plot-
ting of individual values for each set demonstrated clearly that bothGS
and DFA values exhibited very large interindividual variability across
subjects (Fig. 2b).

To test whether interindividual variability in neuronal synchroni-
zation could be explained by brain criticality, and particularly by the
putative individual operating points along an extended critical regime,
we investigated whether GS and DFA values would be correlated and
co-vary across subjects. In MEG, the positive correlations between GS
andmean DFA exponent were significant in all frequencies above 4Hz
(Pearson correlation test, N = 192, FDR-corrected, pFDR <0.01 for
4–5Hz and pFDR <10–7 for the higher frequencies, reaching pFDR

<10–25 at 7Hz; Fig. 2c). In SEEG, the correlations betweenGS andmean
DFA were weaker than in MEG in higher frequencies, but significant in
the theta-alpha (Pearson correlation test, N = 57, range 4–12 Hz, pFDR
<0.01 for 4 and 10Hz) and ripples-gamma (>165Hz) bands (Pearson
correlation test, N = 57, pperm <0.05, Fig. 2c). In SEEG, correlations
between GS and DFA values were negative, but non-significant, in beta
and gamma bands (range 20–60Hz).

Since our modeling results showed that subjects operating
around the peak of the critical regime would exhibit a quadratic cor-
relation in addition to linear ones, we also estimated quadratic trends
and their directionwith partialed-out linear influences betweenGS and
mean DFA exponent, using the R2 regression statistic multiplied with
the sign of the quadratic coefficient. In the critical regime, the quad-
ratic coefficient should be negative, denoting a peak, i.e., a concave
curvewith an inverted-U shape. Significant correlationswith a negative
quadratic coefficient betweenGS andmeanDFAwere indeedobserved
in MEG data in alpha (8–14Hz, peak frequency at 10Hz with
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Fig. 2 | Correlations of global synchronization and LRTCs. a Grand-average
graph strength (GS, left) and detrended fluctuation analysis (DFA) exponents
(right) in MEG and SEEG data as a function of frequency. Shaded areas represent
95% bootstrapped confidence intervals. b Distributions for GS (top) and DFA
exponents (bottom) in MEG at 10Hz (left, N = 192 recordings) and in SEEG at 7Hz
(right,N = 57 recordings), eachdot representing onedataset, bars denotingmedian
and25th and75th percentile. cMean linear correlations (Pearson’sρ) of GS andDFA
as a function of frequency. Real correlations are shown in blue/red, and surrogate
means in gray, with the shaded areas representing 95% confidence intervals. The
asterisks at the top indicate pFDR < 0.01 (case-resampling permutation test, two-
sided, significant after FDR correction with Benjamini–Hochberg), the black line at

the top indicates pFDR < 10−7, and “x” indicates pperm < 0.05. d Partial-quadratic
correlations (after the linear component has been partialed-out) of GS and DFA
exponent are indexed by the R2 times the sign of the quadratic beta (notice the
y-axis is reversed, with negative on top). Shaded errorbars and the surrogates are
obtained as in c. Asterisks indicate pFDR < 10−3, (correction with
Benjamini–Hochberg), “x”s indicate pFDR < 0.01. e, f Scatterplots of GS and DFA at
peak correlation frequencies 7 and 10Hz, each dot representing one dataset. Fits
are shown as solid lines, green for linear and yellow for quadratic, with the faint
dotted side lines showing the 95% prediction bounds. Source data for panels a–f is
provided in the source data file.
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pFDR < 10−6), beta (15–29Hz) and ripples-gamma (>135Hz; Fig. 2d)
bands. In SEEG data, we found no evidence for significant quadratic
correlations between GS and mean DFA exponent in any frequency
(Fig. 2d). As a post hoc visualization of these findings, scatterplots of
individual DFA values as a function ofGS corroborated the notion of an
overall positive correlation across frequencies as well as a salient
quadratic component in MEG at 10Hz (Fig. 2e, f). To further confirm
these observations, we also computed correlations between GS and
DFA values within the canonical frequency bands established in a data-
driven manner with Louvain clustering (Supplementary Fig. 1) and
observed significant linear positive correlations in all frequencies in
MEG and in theta (θ, 4–8Hz), alpha (8–14Hz) and beta (β, 15–29Hz) in
SEEG (Supplementary Fig. 2).We further confirmed that results did not
depend on the choice of the phase synchronization metric by also
estimating GS with PLV for MEG and with wPLI for SEEG (Supplemen-
tary Fig. 3). Moreover, we also tested for the generalization of these
findings into time-lagged forms of neuronal synchronization. We
computed lagged synchronization for lags of 1 and 2 cycles (See
Methods) and observedGSof lagged synchronization both inMEG and
SEEG peaking in the alpha band (Supplementary Fig. 5a, c). The linear
correlations between DFA and lagged synchronization were very
similar to those observed for non-lagged synchronizations (Supple-
mentary Fig. 5b, d).

As both synchronization and LRTCs have been shown to be trait-
like phenomena, we further investigated whether their correlations
would also exhibit the high test-retest reliability that characterizes
trait-like phenomena. Using the Gauge Repeatability method46, we
confirmed that both the individual GS and DFA values (Supplementary
Fig. 4a–c) and their correlations (Supplementary Fig. 4d, e) had sig-
nificant test-retest reliability and capacity. In the light of the modeling
results, the positive linear correlations betweenGS andmeanDFA thus
strongly suggest that healthy brain networks operate mostly on the
subcritical side of an extended critical regime, or GP, while the quad-
ratic correlations in MEG indicate that some subjects also operate
around the peak of this regime. The robust co-variability between the
strengths of neuronal synchronization and LRTCs implies that there is
a large range of possible individual operating points. This supports our
hypothesis that the human brains operate in an extended critical
regime, such as the Griffiths Phase, instead of being confined to the
vicinity of a singular critical point.

Synchronization and LRTCs are positively correlated across
brain regions
To get insight into the brain anatomy and localization of these corre-
lations, we estimated the correlation of narrow-band oscillation syn-
chronization and DFA exponents across subjects separately for each
parcel byestimatingameannodal synchronizationusingNodeStrength
(NS; with MEG parcels or SEEG contacts being the nodes) and its cor-
relations with the DFA exponents of the node within the canonical
frequency bands. Positive linear correlations between NS and DFA
exponents were significant in all frequencies except in the delta-band
and within all functional subsystems in MEG data yielding on average
Pearson correlations of 0.5 (Fig. 3a). Significant linear correlations were
observed in parcels throughout the cortex. In the alpha band, correla-
tions were the strongest in dorsal visual areas and prefrontal cortex
(PFC), and in thehigh-gamma-band in left-parietal andposterior regions
(Fig. 3b). In the beta band, these correlations were strongest in the
somatomotor (SM) regions, and in the gamma-band, in the ventral
visual stream regions, PFC, and cingulate structures (Supplementary
Fig. 6a). In SEEG, positive linear correlations were observed in the delta
to beta frequency bands, and in ripple-high-gamma frequencies
(Fig. 3c). Positive linear correlations in theta and alpha bands were
strongest inmedial prefrontal, temporal, andparietal regions belonging
to the default mode (DM) network (Fig. 3d and Supplementary Fig. 6b).

Negative quadratic correlations indicative of operation close to
the critical point were observed from alpha to gamma bands in MEG
(Fig. 3e) and were strongest in posterior regions in alpha and in tem-
poral and medial regions in the high-gamma-band (Fig. 3f and Sup-
plementary Fig. 6c). Significant quadratic correlations in SEEG were
much sparser (Fig. 3g) and observed in parcels mostly in parietal and
frontal regions (Fig. 3h and Supplementary Fig. 6d). These results were
reproduced also using individual wavelet frequencies (Supplementary
Fig. 7) and had significant test-retest reliability (Supplementary
Fig. 4f–i). The spatiotemporally widespread co-variability between
synchronization and LRTCs thus further supports the idea that also
large areas of the human neocortex are more likely to operate in a
Griffiths-phase critical regime instead of at a fixed critical point. The
anatomical heterogeneity and frequency-specificity of these anatomi-
cal patterns also support the hypothesis that different brain structures
or functional systems may express distinct and partially independent
operating points16.

Negative correlations between synchronization and LRTCs
characterize the Epileptogenic Zone (EZ)
Epilepsy has been associated with excessive excitation, hyper-
synchronization47–49, and altered DFA exponents31,50. Hence, we hypo-
thesized that brain areas in the epileptogenic zone (EZ) could be
characterized by operating points in the supercritical side of the cri-
tical regime, in contrast with the healthy brain areas that appear to
operate mostly in the subcritical side (Fig. 4a). We thus investigated
correlations between synchronization and LRTCs in SEEG contacts in
EZ and compared these correlations with those for non-EZ contacts
(Fig. 4b). The EZ contacts exhibited slightly larger PLV values but
similar DFA exponents compared to the non-EZ contacts (Fig. 4c, d).
Importantly, as hypothesized, the correlations between subjects’ GS
and mean DFA were negative for EZ contacts in most frequencies
(Fig. 4e). The difference in mean correlation values between non-EZ
and EZ was significant between 3 and 8Hz (peaking at 4Hz with
pperm < 10–7) and at 165Hz (pperm < 0.05) (Fig. 4f).

Discussion
In the human brain, there is considerable variability among healthy
individuals in the strengths of long-range phase synchronization and
LRTCs10–16. Both synchronization and LRTCs are test-retest reliable12,51,52,
heritable12,53–55, and influenced by genetic polymorphisms15, indicating
that this variability is trait-like and rooted in the individual functional
neuroanatomy rather than attributable to moment-to-moment varia-
bility or measurement noise. Discovering the neuronal dynamics basis
defining the boundaries of such variability is essential both for under-
standing the neurobiological factors underlying individual differences
in cognitive performance and for developing new therapeutic approa-
ches for brain diseases characterized by abnormal synchronization
levels. We tested here the hypothesis that individual variability in
observable inter-areal synchronization and oscillation LRTCs in vivo
would be explained by the individual’s position in the critical regime of
the state space (Fig. 1a, b), i.e., by the individual operatingpoint,which is
determined by the underlying control parameters. Moreover, we
hypothesized that the structural and functional heterogeneities in
humanbrainswould lead to the stretching of a theoretical, critical point
into a regime of critical-like dynamics, the Griffiths Phase (GP), which
would enable the expression of individual operating points along a
wider regime. This has previously been suggested bymodeling studies,
where a GP has been shown to arise, e.g., from a hierarchical modular
organization of the structural connectome37–40. If the variability of
synchronization levels would be explained by the variability in the
individual operating points, inter-areal oscillatory synchronization
levels should be correlated with LRTCs across both individuals and
brain regions.
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We first showed, using computational modeling of macroscopic
oscillation synchronization dynamics, how the operating point within
a GP determines distinct modes of covariation of long-range phase
synchronization and LRTCs in local oscillation amplitude fluctuations.
We then leveraged the large interindividual variability across subjects
in the LRCTs and synchronization levels to investigate whether they
co-vary within individuals and regions in MEG and SEEG data and
thereby deduced their in vivo operating regimes. We found that in
healthy subjects and in healthy brain areas of epileptic patients, inter-
areal synchronization of neuronal oscillations was positively corre-
lated with LRTCs in all frequencies above 5Hz in MEG and in the alpha
and gamma bands in SEEG (see Fig. 3). In addition, we also observed a
significant quadratic trend, which indicates that a subset of subjects
operates around the peak of the critical regime, exhibiting the stron-
gest LRTCs and thereby operating closest to the theoretically attain-
able criticality (see Fig. 1c). These findings strongly suggest that
individual and regional variability in the synchronization levels is
explained by the variability in the operating points in line with the GP
framework.

The GP framework extends the classical notion of criticality being
constrained to a singular point in the space of control parameters
which underlies hypotheses of the brain operating either at the critical

point34, near the critical point17, or in a slightly subcritical regime41,56,57.
Importantly, both here and in our earlier study16, we found hetero-
geneity in dynamics as well as covariance of LRCTs and synchroniza-
tion levels also across neocortical regions within specific frequency
bands. This suggests that the different functional brain systems in
individual subjects operate in different positions of the critical
regime16 rather than being fully controlled by a global parameter.
Thesefindings are consistentwith a computational study showingwith
the Landau-Ginzburg model that phase transitions may not be transi-
tions between quiescent and fully activity states, but rather transitions
of synchronization emerging from the noninfinite size of mesoscopic
regions and spatial dependence44. A simulation study using detailed
microcircuit data has demonstrated that at a sharp transition from
synchronous to asynchronous activity, a spectrum of network states
emerges due to a range of neurophysiological mechanisms58. At the
large-scale systems level, tuning a computation model close to a
supercritical Hopf bifurcation maximized its fit to BOLD signal func-
tional connectivity59, implying that brains indeed operate near
criticality.

The present results converge to show that healthy brain areas
operate mostly in the subcritical side of the GP, which is in line with
previous studies emphasizing the possibility and importance of

Fig. 3 | Correlations of synchronization and LRTCs at parcel-level. a Linear
correlation (Pearson’ ρ) of node strength (NS) withmean DFA exponents estimated
for each parcel in MEG data (N = 192 recordings) for left and right hemispheres (LH
and RH) averaged over canonical frequency bands. Non-significant correlations are
masked in gray. The gray bars on the right show the mean correlation ± SD across
significant parcels (N = 400 parcels) for each band. b Cortical topographies of the
correlation across datasets between NS and DFA inMEG for alpha and high-gamma

frequency bands; shown only for parcels where correlation is significant. c, d Same
as in a, b, for theta and alpha bands in SEEG (N = 57 recordings). e–h Same as above
for partial-quadratic correlations. Frequency bands: δ: 2–4Hz; θ: 4–8Hz; α:
8–14 Hz; β: 15–29Hz; lγ: 30–70Hz; hγ: 71–135Hz; rγ: 165–225Hz. Functional net-
works: Vis visual, DA dorsal attention, SM somatomotor, SV saliency/ventral
attention, DMN default mode network, L limbic, FP frontoparietal/control. Source
data for panels a, c, e, f is provided in the source data file.
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healthymammalian brains to operate in a subcritical-like regime. Prior
modeling and in vivo studies from normal human and non-human
brains have suggested this operating point to be in the subcritical
phase very near the critical point41,56,60. A subset of the healthy subjects
contributed also to a quadratic relationship between synchronization
and LRTCs similar to prior observations of quadratic correlation
between oscillation amplitudes and LRTCs in humanMEG and EEG61, in
intracranial EEG49, and in in vitro responses to the manipulation of
the E/I balance62,63. Our findings also extend previous findings
showing covariation of evoked activity and synchronization in
electrocorticography49, and systematic covariation in the decay of
spatial and temporal correlations in the human cortex that suggested
that this covariation is linked to intrinsic excitabilitymeasures tracking
antiepileptic drug action36. However, here we posit that a singular
operating point in the subcritical phase would be biologically sub-
optimal because it would be associated with attenuated propagation
of neuronal processing, inadequate synchronization, and loss of
power-law scaling that endows the functional benefits of criticality.
Operation in the subcritical-to-critical side of a GP, on the other hand,
yields a range of operating points that are sufficiently far from the
supercritical regime that may predispose to epileptogenesis49,64 while
benefitting from the functional advantages that have been ascribed to
operation at the classical critical point, such as maximal dynamic
range,maximal capacity for information transmission and storage, and
optimal computational efficiency2,17,29,62. While the GP has already been
established to exhibit critical-like dynamics, its functional implications
have not been fully explored. We propose here that the extended
critical regime, i.e., the GP in human brain activity, would have func-
tional benefits akin to those proposed for the classical critical point
that are necessary for healthy brain functioning. Thus, a fundamental
functional implication for operation in the GP is that it would enable

the shifting of the individual or even brain-system-specific operating
point dynamically in response to endo- or exogenous demands with-
out losing the functional advantages conferred by critical-like
dynamics.

We observed variability in the strength of correlations not only
across brain regions but also across frequencies, indicating that brain
functional networks have a small variability in their operating points in
line with the GP framework where the GP arises due to functional and
structural heterogeneity37. The correlations were linearly positive at
the whole-brain level and inmost parcels and frequencies. However, in
alpha, beta, and high-gamma bands there was also a quadratic trend,
showing that in a subset of subjects, these functional networks oper-
ated around the peak of the extended critical regime. Given the fun-
damental functional roles that alpha and gamma-band oscillations are
thought to play in feed-back and feed-forward information
processing65–69, respectively, it is conceivable that these oscillations
operate around the peak of the putative critical regime, enabling
maximal dynamic range and flexibility. The localization of strongest
alpha-band correlations into dorsal visual areas and PFC and gamma-
band correlations into the ventral stream areas is in line with previous
findings of the differential localization of power and synchronization
in these frequencies5,70–72 and with their biologically differential
dependence on anatomy, neurobiological mechanisms and neuro-
modulatory genes15,73,74, These findings of heterogeneous neuronal
dynamics are also in agreement with a previous study from awake
mouse visual cortex where scale-free neural activity was limited to
specific subsets of neurons75. Heterogeneity across frequencies and
functional neuroanatomy could provide a means for adapting beha-
vior according to environmental demands.

In contrast to healthy brain activity, epilepsy has been associated
with a shift in the excitation-inhibition balance towards excessive
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excitation, which leads to aberrant pathological brain dynamics47,48,76

and episodes of abnormal hyper-synchronous activity64. Brain criti-
cality is primarily thought to be controlled by the finely balanced E/I
ratio and excessive excitation may lead to operation in the super-
critical phase, as has been shown in in vitro (Plenz & Thiagarajan25;
Toker et al.41; Yang et al.77) and modeling (Poil et al.31) studies. We thus
investigated whether inter-ictal brain dynamics in epileptogenic brain
regions would be characterized by supercritical-like dynamics. This
would be indicated by a negative relationship between synchroniza-
tion andLRTCs (see Fig. 1c).We found that the EZcontactswere indeed
associated with a negative correlation between synchronization
metrics and the DFA scaling exponents (LRTCs). This constitutes
empirical evidence for epilepsy being associated with the epilepto-
genic circuitry operating in the supercritical side of an extended cri-
tical regime, which may be a key factor that predisposes these circuits
to generate epileptic seizures. In SEEG, in the nominally healthy non-EZ
contacts outside of the epileptogenic zone, we found no evidence for
quadratic correlations that would indicate operation near the peak of
the critical regime. Antiepileptic drugs, used also by the patients in this
study, have been shown to push the brain towards subcriticality36,78

and may thus constitute a likely explanation for this phenomenon.
Another possible contributing factor might be long-term neuronal
plasticity that may have globally enhanced inhibitory connections in
order to compensate for locally increased excitability in the epilepto-
genic network, which would drive these healthy brain regions towards
the subcritical side of the critical regime. This is supported by the
presence of negative correlations as indicative of supercritical
dynamics in gamma-band in some brain areas, suggesting an imbal-
ance in the system dynamics.

Given that brain criticality is primarily thought to be controlled by
the E/I ratio, where an imbalanceof E/I or synchronization leads to sub-
or supercritical dynamics25,31,63,79 and given that pathological human
brain activity is associated with changes in brain E/I balance9,80,81, we
propose that pathological synchronization dynamics (hypo- or hyper-
synchronization) in brain diseases9,50,61,64,76,80,81 could emerge via mod-
ulations of brain critical dynamics by changes in the E/I balance or by
other physiological parameters such as changes in structural
connectivity.

In conclusion, we find that synchronization levels and LRTCs are
correlated across subjects in a manner which suggests that healthy
human brains operate in the subcritical side and around the peak of an
extended critical regime, the Griffiths Phase (GP), while epileptogenic
areas operate in the supercritical side. These findings provide strong
evidence that the variability in synchronization levels is determined by
an individual’s operating point, i.e., by the individual position in theGP.

Methods
Overview
We first used a computational model based on a hierarchical
Kuramot-based computational model to generate brain dynamics in
a Griffiths Phase (GP) and in the classical criticality framework and to
investigate the relationship between oscillatory inter-areal syn-
chronization and LRTCs across wide range operating points near the
critical point. We then estimated inter-areal synchronization and
LRTCs in source-reconstructed resting-state magnetoencephalo-
graphy (MEG) data recorded from healthy subjects and resting-state
stereo-electroencephalographic (SEEG) data recorded from epi-
lepsy patients. Simulated, MEG, and SEEG data were filtered into
narrow-band frequency time series. Synchronization was computed
between all pairs of brain regions/electrodes and LRTCs were ana-
lysed with detrended fluctuation analysis (DFA) for each parcel. To
test whether the heterogeneity of the individual variability of LRCTs
and synchronization levels reflects the variability of individual
operating points as predicted by the GP framework, we computed
linear and quadratic correlations between synchronization and

LRTCmetrics. In SEEG data, we carried these analyses out separately
for EZ and non-EZ networks and computed the difference in corre-
lation coefficients.

Modeling brain dynamics and criticality with a hierarchical
Kuramoto model
AhierarchicalKuramotomodelwasused to simulate coupled neuronal
population narrow-band oscillation dynamics with LRTCs and to
investigate observable correlations between synchronization and DFA
exponents. The Kuramoto model is a parsimonious dynamical model
for neural oscillation and synchronization. Despite its simplicity, the
Kuramoto model is capable of, like many other biophysically detailed
models, capturing rich neuronal dynamics, including mesoscopic43

and macroscopic brain waves, with a wide array of bifurcation types
that are analytically tractable. Importantly, the Kuramoto model was
recently shown to produce GP-like dynamics in large synthetic hier-
archical networks38,82,83. Therefore, the Kuramoto model is a relevant
and potent dynamical model when combined with real human struc-
tural connectome to address the GP.

We adapted a two-layer nested Kuramoto model of local and
large-scale neuronal oscillatory dynamics with a hierarchical variant15,42

consisting of 400 nodes (corresponding to 400 brain areas), each
containing a conventional Kuramoto population of oscillators,
N = 500. Oscillators were modeled with a Gaussian frequency dis-
tribution with a mean value of 10 and a standard deviation of 3 to
obtain properties of an oscillating network with coupled interactions,
where the oscillation frequency per se does not play a role. The phases
of all oscillators in a node were averaged to derive a single time series
per region, whose absolute values were then taken to obtain the Kur-
amoto order parameter, corresponding to the amplitude envelope of
local oscillations. In thismodel, a local control parameter K determines
the homogeneous coupling strength within the nodes while a global
control parameter L determines the inter-regional coupling strength
based on the pairwise-connectivity white-matter axonal fiber counts
estimated with structural diffusion tensor imaging (DTI) and obtained
from theHumanConnectome Project (HCP).White noisewas added to
the final time series to simulate device and environmental noise. This
model yields dynamics both at local and large-scale network levels that
are comparable to the empirically observable dynamics within and
between cortical regions. Thus, we were able to model both local
interactions within smaller regions (corresponding to cortical MEG
parcels or SEEG contacts), and synchronization (corresponding to that
between parcels or contacts across the whole brain). We assessed
LRTCs for each region using DFA, and synchronization between all
pairs of regions using the PLV (see below).

Diffusion tensor imaging (DTI) data
Briefly,we computed structural connectomes for 57 unrelated subjects
randomly selected from the WU-Minn dataset (1200 subjects) of the
Human Connectome Project (HCP, https://www.humanconnectome.
org). From each subject’s minimal-preprocessed Diffusion Weighted
Imaging (DWI) data, we generated a preliminary tractogram of 50
million streamlines using Multi-Shell Multi-tissue (MSMT) spherical
deconvolution and probabilistic tractography (maximum tract
length = 250mm; fiber orientation distribution (FOD) amplitude cut-
off, 0.01; seeding from the gray matter-white-matter interface; appli-
cation of the anatomically constrained tractography (ACT)
framework84. Using spherical-deconvolution informed filtering (SIFT),
we filtered the initial tractogram in order to reduce bias derived from
longer, thicker tracts. Finally, we created individual cortical parcella-
tions (with 400parcels) basedon the Schaefer atlas and then collapsed
streamlines to weighted edges between parcels. Each end of a
streamline was assigned to the most probable parcel using a 3mm
radial search outwards, and the weight of the edge between each pair
of parcels was set as the number of streamlines connecting them.
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Weights on the matrix diagonal (representing self-connections) were
set to zero, so that in simulations, each parcel (node) is connected to
all others, but without local feedback.

Acquisition of MEG and MRI Data
We recordedMEGdata from52 healthy subjects (age: 31 ± 9.2, 27male)
during a 10-min eyes-open resting-state session with a Vectorview/
Triux (Elekta-Neuromag/MEGIN, Helsinki, Finland) 306-channel sys-
tem (204 planar gradiometers and 102magnetometers) at the Bio-Mag
Laboratory, HUS Medical Imaging Center, Helsinki. Overall, 192 ses-
sions of MEG data were obtained, with subjects contributing, on
average, 3.7 ± 4 sessions each. Subjects were instructed to focus on a
cross on the center of the screen Bipolar horizontal and vertical elec-
trooculography (EOG) were recorded for the detection of ocular arti-
facts. MEG and EOG were recorded at a 1 kHz sampling rate. For each
subject, T1-weighted anatomical MRI scans (MP-RAGE) at a resolution
of 1 × 1 × 1mm with a 1.5-Tesla MRI scanner (Siemens, Munich,
Germany) were obtained at Helsinki University Central Hospital for
head models and cortical surface reconstruction. The study protocol
for MEG and MRI data was approved by the Coordinating Ethical
Committee of Helsinki University Central Hospital (ID 290/13/03/
2013), written informed consent was obtained from each subject prior
to the experiment, and all research was carried out according to the
Declaration of Helsinki.

MEG data preprocessing and source modeling
Temporal signal space separation (tSSS) in the Maxfilter software
(Elekta-Neuromag) was used to suppress extracranial noise from MEG
sensors and to interpolate bad channels. Independent components
analysis (ICA) adapted from the Fieldtrip toolbox) was used to extract
and identify components that were correlated with ocular artifacts
(ocular, heartbeat, or muscle artifacts). Volumetric segmentation of
MRI data, flattening, cortical parcellation, and neuroanatomical label-
ing with the 400-parcel Schaefer atlas was carried out with the Free-
Surfer software. The MNE software was then used to create cortically
constrained source models with 5-mm inter-dipole separation, for
MEG–MRI colocalization, and for the preparation of the forward and
inverse operators. We computed noise covariance matrices (NCMs)
using the preprocessedMEGdata filtered with finite-impulse-response
(FIR) filters at 151–249Hz, averaged across 10 s time windows. NCMs
were used for creating one inverse operator per session and the dSPM
method with regularization parameter λ =0.11. We then estimated
vertex fidelity to obtain fidelity-weighted inverse operators that reduce
the effects of spurious connections resulting from source leakage and
collapsed the inverse-transformed source time series into parcel time
series in a manner that maximizes the source-reconstruction
accuracy42,85. For each parcel pair (edge) we also computed cross-
parcel phase-locking of the reconstructed simulated time series,
reflecting cross-parcel signal mixing, and excluded parcels and edges
with low fidelity and high cross-parcel phase-locking, using individual
thresholds to retain for each subject the top90%parcels by fidelity and
the bottom 95%of edges by cross-parcel mixing (14.9 ± 0.2% of parcels
and 14.1 ± 0.1% of edges rejected on average per set).

Acquisition of SEEG data
We recorded 10min of stereo-EEG (SEEG) neuronal signals from 68
drug-resistant focal epileptic patients (age: 30 ± 9.4, 38 male) during
the clinical assessment of the epileptogenic zone (EZ) at the “Claudio
Munari” Epilepsy Surgery Centre in the Niguarda Ca’ Granda Hospital,
Milan. These resting-state recordings were free of seizure activity, and
there were no seizures within one hour prior to or after the recording.
During the recording, the patient was asked to lay down in their bed in
a quiet resting state with their eyes closed.

Visual inspection of delta amplitude profiles from EEG channel
pair C3-P3 and video recordings of the patient were used by trained

technicians to ascertain the absence of signs of sleep or drowsiness.
Intracranialmonopolar (with contacts sharing the reference to a single
white-matter contact) local-field potentials were acquired from brain
tissue with platinum–iridium multi-lead electrodes. Between 8 to 15
contacts, each 2mm long, 0.8mm thick, and with an inter-contact
border-to-border distance of 1.5mm (DIXImedical, Besancon, France),
were present in eachpenetrating shaft, with the amounts of electrodes
and their anatomical positions varying according to surgical
requirements86. Each subject had 17 ± 3 (range 9–23) shafts with a total
of 153 ± 20 electrode contacts on average. The electrode positions
were localized after implantation using CT scans and the SEEGA
automatic contact localization. Structural MRIs were recorded before
implantation and colocalized with post-implant CT scans using rigid-
body coregistration87. Individual patients’ contacts were assigned to
parcels of the Schaefer atlas.

We acquired an average of 10min of uninterrupted spontaneous
resting-state activity with eyes closed with a 192-channel SEEG ampli-
fier system (Nihon-Kohden Neurofax EEG-1100) at a sampling rate of
1 kHz. All patients were taking antiseizure medications (antiepileptic
drugs (AEDs) with a large variation in the dosage and compounds (See
Supplementary Table 1 for the dosage administered in the morning of
the day of the recording), and the time elapsed the last drug admin-
istration and the SEEG resting-state recording was not controlled.
Patients gave written informed consent for participation in research
studies and for publication of results pertaining to their data. The
ethical committee of theNiguardaHospital,Milan, approved this study
(ID939)whichwasperformedaccording to theDeclarationofHelsinki.

Filtering, preprocessing, and identifying and analysing the epi-
leptogenic zone (EZ)
The EZ is clinically defined as the brain regions where ictal activity
initiates and propagates88. In this work, the EZ in individual patient
brains were identified and stringently confirmed by clinicians using
peri-ictal and ictal SEEG recordings89. Defective contacts that demon-
strated non-physiological activity (1.3 ± 1.2, range 0–10) were excluded
from analyses, and three subjects in which more than 50% of contacts
were defective were discarded from further analyses. Analyses in
Figs. 2, 3 included only contacts from tentatively healthy regions (nEZ),
i.e., those in which ictal activity was not observed during SEEG mon-
itoring, while analysis in Fig. 4 were performed for EZ contacts. Sub-
jects whohadmore thanhalf of their contacts in the EZ (eight subjects)
were excluded from the analysis of non-EZ data and included in EZ
data. For non-EZdata,we includeddata from57 subjects,with a totalof
4453 non-EZ contacts (average per subject 78 ± 19, range 41–124). For
EZ, we used only the contacts defined as being epileptogenic— i.e.,
contacts that were located within the EZ or were part of the seizure
propagation network and all contacts from eight subjects in whom
>50% of contacts had previously been classified as EZ. Subjects who
had <11 EZ contacts were excluded. Thus, both analyses had 57 sub-
jects, with 49 common to both non-EZ and EZ analyses, eight included
only in non-EZ, and eight only included in EZ analysis. The total
number of EZ contacts was 1725 (average per subject 30 ± 17.5, range
11–79). The average distance between EZ and non-EZ contacts was
similar (Supplementary Fig. 8).

As occasional inter-ictal events characterized as large amplitude
spikes or sharp waves with wide spectral and spatial spread may bias
the LRTC andphase synchronization estimates64, we rejected temporal
segments with such activity45. Briefly, we partitioned the signals into
adjacent time windows of 500ms and decomposed the signals into 24
frequency bands with Morlet-wavelet filtering. With this time-
frequency decomposition, we first computed the mean and the stan-
dard deviation of the signal amplitude for each individual SEEG gray
matter electrode contact and frequency. A given 500ms time window
was considered putatively contaminated by epileptic (high-amplitude
and spike-like) artifacts and rejected if ≥10% of contacts exhibited an
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amplitude greater than their mean amplitude plus five times the
standard deviation, and this effect was found in ≥25% of the frequency
bins.We then referenced SEEG electrodes in graymatter to the closest
contacts in white matter, which yields signals with more accurate
phase estimates47, FIR-filtered broad-band contact time series with a
cutoff at 440Hz and removed 50Hz line noise and its harmonics with
notch FIR filters45.

Analysis of inter-areal synchronization
MEG and SEEG data were filtered into complex-valued narrow-band
time series using 24 Morlet wavelets (parameter m = 5) with loga-
rithmically increasing center-frequencies between 2–225 Hz. We
computed pairwise phase synchronization for all narrow-band fre-
quencies between all 400 cortical parcels in source-reconstructed
MEG data and between all non-epileptogenic contact-pairs of SEEG
data for all narrow-band frequencies. The main analysis was based
on phase synchronization estimated with the phase-locking value
(PLV) for SEEG data and with the weighted Phase-Lag Index (wPLI)
for MEG data, but for comparison, phase synchronization using the
PLV for MEG and the wPLI for SEEG are shown in Supplementary
material. The wPLI, unlike PLV, discards zero-lag coupling that in
MEG data is mostly spurious caused by linear mixing, but still can
detect true positive coupling when there is a small phase lag90. We
also investigated delayed synchronization by computing the same
synchronization metrics where one time series had been shifted
towards the other by a lag of either one or two cycles (Supplemen-
tary Fig. 5). To assess the whole-brain and nodal level of synchro-
nization, we used graph theory. Node Strength NS was obtained for
each node (contacts in SEEG and parcel in MEG) by averaging the
strength of edges (connections of synchronization) for that node.
For each subject, all the cortical NS values were then averaged again
to estimate the Graph Strength GS for each frequency that defines
the whole-brain level of synchronization,

Detrended fluctuation analysis
We used Detrended Fluctuation Analysis (DFA) to estimate mono-
fractal scaling exponents of neuronal LRTCs that typically vary
between 0.5 and 130,52,55,64. DFA was carried out in the Fourier domain91

with a Gaussian weight function used for detrending and using 25 log-
linear windows from 5 to 56 s. The fluctuations were fitted with a
robust linear regression with a bisquare weight function to obtain the
DFA exponents, all with negligible fit error. DFA exponents were
computed for all contacts of all SEEG subjects and all parcels of allMEG
sets, and for each narrow-band frequency. Mean DFA scaling expo-
nents were obtained by averaging DFA exponents over all nodes. We
then removed outliers >3 SD from the median. As inter-day variability
was non-neglectable for violations of independence51 (Supplementary
Fig. 4), multiple recording sessions from the same MEG subjects were
treated as individual data points.

Correlation of synchronization and LRTCs
Pearson’s linear correlation analysis was used to estimate the correla-
tion between subjects’/sets’ GS and mean DFA values for each fre-
quency. To obtain the surrogate distribution of correlation
coefficients, the order of the dependent variables was shuffled 1000
times. Multiple hypothesis testing was corrected with the
Benjamini–Hochberg method, pooling together both synchronization
metrics and all frequencies. We also estimated correlations between
GS and mean DFA with a partial-quadratic model, i.e., a purely quad-
ratic correlation where the linear trend in the dependent variables was
partialed-out. To test whether the relationship between synchroniza-
tion and criticality was concave and not convex (peaks rather than
dipping, with the concave inverted-U curve opening down), in addition
to obtaining the R2 statistic, the coefficient of the quadratic term was
multiplied with the sign (note that the y-axis is reversed in the main

text subject correlations figure panels, so that the negative values
indicating concave correlations are on top).

We next calculated linear and partial-quadratic correlations
across subjects for each cortical parcel and frequency. In MEG data,
for each of the 400 parcels, its local NS value was correlated with its
DFA exponent across sets, with outlier rejection, surrogate calcula-
tion, and FDR correction (this time including also the 400 parcels),
same as above. In SEEG data, contacts from all subjects were pooled
into parcels of the 100-parcel Schaefer atlas, and the correlations
between parcel NS values and DFA exponents were computed for all
parcels containing at least 5 electrodes (after outlier rejection,
resulting in 77/100 parcels). In order to be able to compare results
between MEG and SEEG, SEEG data were interpolated into the atlas
of 400 parcels that was also used for MEG. Linear and partial-
quadratic correlations were then computed for these parcels in the
same way as described for the subject level. For visualization pur-
poses, we grouped frequencies in data-driven bands, individuated as
the optimal community structure determined by the Louvain
method of the self-similarity frequency-by-frequency matrix of the
linear parcel correlations (delta, δ: 2–4Hz; theta, θ: 4–8 Hz; alpha, α:
8–14 Hz; beta, β: 15–29 Hz; low-gamma, lγ 30–70Hz; high-gamma,
hγ: 71–135 Hz; ripples-gamma, rγ: 165–225 Hz). Results were similar
for single frequencies not grouped into bands (Supplementary
Fig. 7) and if statistics were averaged into bands after correlations
instead of before.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw electrophysiological data cannot be shared publicly due to reg-
ulations imposed by the Ethical Committees but can be shared for
collaborative efforts upon request.

Aminimal dataset that canbe used to reproduce themainfindings
of this study, containing phase synchronization matrices and DFA
exponents for MEG and SEEG cohorts along with supporting data, as
well as simulated data, is publicly available at DataDryad repository
(https://doi.org/10.5061/dryad.vdncjsxzn).

Source Data for the main manuscript figures are provided as a
Source Data file. Source data are provided with this paper.

Code availability
All code used in this work to produce the modeling results, con-
nectome matrices, to final figures can be found at https://github.com/
palvalab/DFA_Synch/.
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