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� Machine learning classified mild traumatic brain injury patients based on MEG data.
� The results were consistent across two independent data sets and sites.
� Sensor-level MEG power spectra provide a feasible measure for clinical follow-up.
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Objective: Diagnosis of mild traumatic brain injury (mTBI) is challenging despite its high incidence, due
to the unspecificity and variety of symptoms and the frequent lack of structural imaging findings. There is
a need for reliable and simple-to-use diagnostic tools that would be feasible across sites and patient pop-
ulations.
Methods: We evaluated linear machine learning (ML) methods’ ability to separate mTBI patients from
healthy controls, based on their sensor-level magnetoencephalographic (MEG) power spectra in the sub-
acute phase (<2 months) after a head trauma. We recorded resting-state MEG data from 25 patients and
25 age-sex matched controls and utilized a previously collected data set of 20 patients and 20 controls
from a different site. The data sets were analyzed separately with three ML methods.
Results: The median classification accuracies varied between 80 and 95%, without significant differences
between the applied ML methods or data sets. The classification accuracies were significantly higher with
ML than with traditional sensor-level MEG analysis based on detecting pathological low-frequency activ-
ity.
Conclusions: Easily applicable linear ML methods provide reliable and replicable classification of mTBI
patients using sensor-level MEG data.
Significance: Power spectral estimates combined with ML can classify mTBI patients with high accuracy
and have high promise for clinical use.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction et al., 2016; Iverson et al., 2017), and the prevalence of patients’
Despite the high incidence of mild traumatic brain injuries
(mTBI) worldwide (Gardner and Yaffe, 215)), they continue to
remain under- and misdiagnosed (Pozzato et al., 2017). Evaluation
of mTBI patients is hampered by many confounding factors (Losoi
cognitive complaints does not correlate with possible findings in
mere structural imaging (Lee et al., 2008; Jacobs et al., 2010). There
is a strong need for reliable, objective biomarkers of neuronal
change in mTBI compared with healthy controls, for pinpointing
those patients who would most likely benefit from close follow-
up during the recovery.

Magnetoencephalography (MEG) and electroencephalography
(EEG) directly assess brain electrophysiology, and they can there-
fore provide means to investigate functional changes at the indi-
vidual level. Indeed, resting-state MEG and EEG measurements
after mTBI have demonstrated increased low-frequency (<7 Hz)
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activity (Lewine et al., 1999; Lewine et al., 2007; Huang et al.,
2009; Huang et al., 2014), decreased power and peak frequency
in the so-called alpha frequency range (8–14 Hz) (Korn et al.,
2005; Dunkley, 2015; Koufen and Dichgans, 1978; Tebano et al.,
1988), and altered beta-range (14–30 Hz) functional connectivity
(Zhang et al., 2020). By themselves such alterations are, however,
often subtle, and barely distinguishable from the variation within
normal population (Nuwer et al., 2005). The observed changes in
oscillatory brain activity seem to normalize during recovery
(Koufen and Dichgans, 1978; Kaltiainen et al., 2018), although
some residual abnormalities may persist for months or years even
after mild injury (Lewine et al., 1999; Lewine et al., 2007; Huang
et al., 2009; Kaltiainen et al., 2018).

Oscillatory brain activity at different frequency bands appears
to provide promising features for differentiating mTBI patients
from control subjects, but their overall effect has rarely been
addressed. The utilization of machine learning (ML) techniques
for high-dimensional brain imaging data is increasing and may
provide such an approach. Using ML combined with connectivity
analysis over a wide frequency range, mTBI patients measured
with MEG within 24 hours after the trauma were correctly classi-
fied in over 90% of cases (Antonakakis et al., 2016; Antonakakis
et al., 2017). Recently, Thorpe et al. (2020) differentiated symp-
tomatic mTBI patients from controls with 100% accuracy using
connectivity analysis coupled with linear discriminant analysis
(LDA) at 7 to 282 months post-injury. Here the results stemmed
from rather complicated connectivity analyses which are not easily
transformable into clinical use. In their recent review on MEG
abnormalities after mTBI, Allen and colleagues highlighted two
potential MEG biomarkers, i.e., increased low-frequency power
and connectivity alterations across different frequency bands. They
also underlined the urgent need for simple-to-use analysis pipeli-
nes that would be replicable across different sites, scanners, and
patient populations (Allen et al., 2021).

In the present study, we hypothesized that resting-state MEG
measurements conducted in sub-acute stage (<2 months) after the
trauma, combined with ML techniques over a wide frequency range
on sensor-level power spectra, would enable superior accuracy over
traditional sensor-level based MEG analysis (Kaltiainen et al., 2018)
in differentiating mTBI and healthy control subjects from each other.
We focused our analysis on sub-acute mTBI patients rather than
chronic mTBI, as they are more likely to have changes in the oscilla-
tory brain activity. We used three different linear classification meth-
ods - LDA, support vector machine (SVM), and logistic regression
(LR): We hypothesized that with the multi-channel coverage pro-
vided by a state-of-the-art MEG device, the classification accuracy
would not be highly dependent on the exact ML approach, andwould
outperform traditional, visual inspection based analysis even for
sensor-level data. To confirm the reliability and replicability of the
results over different patient populations, we applied the same anal-
ysis pipeline on two independent data sets, recorded at two different
sites, and compared the results with the traditional sensor-level anal-
ysis (Kaltiainen et al., 2018).
2. Material and methods

2.1. Subjects

Altogether 45 patients (41 ± 2 years; average ± standard error of
the mean, SEM) who suffered from mTBI participated in the study;
22 were females (41 ± 3 years), and 23 males (41 ± 3 years).
Patients had no earlier history of traumatic brain injury, neurolog-
ical or neuropsychological disorders, nor substance abuse. They
were all without medication affecting the central nervous system.
All patients fulfilled the American Congress of Rehabilitation Med-
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icine (ACRM) criteria for mild traumatic brain injury: loss of con-
sciousness (LOC) � 30 min, post-traumatic amnesia (PTA) � 24 h
and 13 to 15 points on the Glasgow Coma Scale evaluation (GCS)
30 min after the head trauma (American Congress of
Rehabilitation Medicine Committee, 1993). GCS varies between 3
(deep unconsciousness) and 15 (alert and oriented) points
(Teasdale and Jennett, 1974). The predominant classes of injury
were bike accident (16 subjects), fall (13), moving vehicle accident
(9), sports accident (6), and hit to head (1). All patients underwent
MEG measurement within two months after mTBI (6–60 days,
average 30 days).

The control group consisted of 45 healthy adults (42 ± 2 years),
of whom 22 were females (40 ± 3 years) and 23 males
(43 ± 2 years). None of the control subjects had a history of head
trauma, neurological or neuropsychological disorders, or hobbies
with high susceptibility to brain trauma. All patients and control
subjects gave their informed consent to participate in the study,
and the study was accepted by the Ethics Committee of Helsinki
and Uusimaa Hospital District. This study was carried out in accor-
dance with The Code of Ethics of the World Medical Association
(Declaration of Helsinki) for experiments involving humans.

2.2. MEG recordings

Magnetoencephalography recordings were conducted at two
sites. The data of twenty patients (42 ± 3 years; 8 females and 12
males) from our previous study (Kaltiainen et al., 2018) and 20
age-matched control subjects (42 ± 3 years; 8 females and 12
males) from earlier studies (Kaltiainen et al., 2016; Kaltiainen
et al., 2018; Renvall et al., 2012) was recorded in Aalto NeuroImag-
ing MEG Core, Espoo, Finland, in a magnetically shielded roomwith
a 306-channel whole-headMEG device (Elektra NeuromagTM, Elekta
Oy, Helsinki, Finland). Data collection from another, previously
unpublished, set of 25 patients (41 ± 2 years; 14 females and 11
males) and 25 controls (41 ± 3 years; 14 females and 11 males)
was conducted at BioMag Laboratory, Helsinki, Finland, with a
newer but otherwise similar 306-channel whole-head MEG device
(Elektra Neuromag TRIUX, Megin Oy, Helsinki, Finland). Measure-
ment environments and noise levels, based on frequently con-
ducted empty room measurements and subsequent analysis of
channel-level noise, were generally alike between the two sites.
Every subject filled the Rivermead Post-Concussion Symptom
Questionnaire (RMPCQ). In the following, the data sets recorded
at Aalto NeuroImaging MEG Core and BioMag Laboratory are
referred to as data sets A and B, respectively. Patient and control
demographics are listed in Table 1.

Both MEG devices consist of triplet sensors of two planar gra-
diometers and one magnetometer at 102 locations, with each gra-
dio/magnetometer coupled to a Superconducting Quantum
Interference Device (SQUID). Four to five head-position-indicator
(HPI) coils (the standard number of HPI coils changed during the
course of the study) were attached to the scalp to enable continu-
ous head position monitoring during the measurement. The head
coordinate systemwas first determined by measuring the locations
of the nasion and two preauricular points with a 3D digitizer (Pol-
hemus 3Space� FastrakTM, Colchester, VT, US). The HPI coil locations
were then recorded in this head coordinate system. Horizontal and
vertical electro-oculogram (EOG) was measured for eye-
movement-related artifact removal, and electrocardiogram was
available for most of the patients and controls.

We measured spontaneous resting-state activity with eyes
closed (EC) and eyes open (EO) from all subjects (3 minutes per
condition for the control subjects in data set A, 10 minutes per con-
dition for the patients in data set A, and 5 min per condition for
patients and controls in data set B). The MEG signals were band-
pass filtered at 0.03–330 Hz and digitized at 1000 Hz, except for



Table 1
Patient and control demographics for both data sets. Age, gender, timing of the magnetoencephalography (MEG) measurement with respect to the trauma (w = week, m = month),
possible detectable structural lesion in magnetic resonance image (MRI)/computed tomography scan (CT), and RMPCQ score of subjects in both data sets. RMPCQ = Rivermead
Post-Concussion Symptoms Questionnaire; NA = not applicable.

DATA SET A DATA SET B

Patients Controls Patients Controls

AGE (AVE ± SEM) 42.3 ± 3 42.0 ± 3 40.5 ± 2 41.3 ± 3
GENDER (F/M) 8/12 8/12 14/11 14/11
MEG (�1W/� 1 M/� 2 M) 4/9/7 NA 0/12/13 NA
MRI/CT LESION (YES/NO) 12/8 NA 9/16 NA
RMPCQ (AVE ± SD) 16.6 ± 12 NA 16.0 ± 11 NA
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the controls in the previous studies (Kaltiainen et al., 2016; Renvall
et al., 2012) in which the recording passband was 0.03–200 Hz and
sampling frequency 600 Hz.

2.3. MEG preprocessing

We downsampled all the data to 200 Hz to enable comparison
between the data sets. The Signal Space Separation (SSS) method
(Taulu and Simola, 2006) was applied to exclude external artifacts,
and all subjects’ measurements were transferred to the same head
position using an SSS-based head transformation algorithm (Taulu
et al., 2004) in MaxFilter software (Elektra Oy, Helsinki, Finland).

Subsequently, the data was processed using MNE Python soft-
ware (Gramfort et al., 2013). A high-pass filter of 1 Hz was applied
to the data. Independent component analysis (ICA; Hyvärinen and
Oja, 2000) was used to identify and remove 1–2 of the most promi-
nent components related to eye blinks or eye movements, as well
as cardiac signal (QRS complex). The data was visually inspected to
ensure successful artifact removal. Subsequently, a 3-min long
time window from both experimental conditions (EC and EO)
was used for analysis for each subject. This time window was cho-
sen, as only 3 min of overall measurement data was available for
some of the control subjects. The preprocessed data was further
divided into three 60-sec time windows. We discarded 20 s at
the beginning and end of each data set, and used a maximum of
20 sec (33%) overlap with the previous/following window for all
data sets.

The 60-sec long time series at each MEG sensor were converted
to frequency space by calculating the power spectral density (PSD)
from 1 Hz to 100 Hz with the Welch’s method using 2048-point
Fast Fourier Transform, 50% overlap, and Hanning windowing in
the Scipy Python package (Virtanen et al., 2020). The PSDs were
converted to decibel scale (dB) to emphasize minor amplitude dif-
ferences in the data. The processed PSDs were further divided into
21 frequency bands, starting from 1-3 Hz and widening linearly up
to 81.8–87.8 Hz; the average of PSD within a given frequency range
was used in the subsequent analysis. We disregarded the band
with 50 Hz power-line interference.

2.4. Classification of the MEG data

We analyzed the data from the two measurement environ-
ments separately to avoid any possible bias related to subtle differ-
ences in the noise levels between devices or environments. As
gradiometers and magnetometers give qualitatively different
(although correlated) data, the sensor types were first included
both separately and then together in the analysis. Thus we had a
total of 2142, 4284, or 6428 spatial-frequency features, i.e., 21 fre-
quency bands on 102 (magnetometers), 204 (gradiometers), or 306
(both) sensors per subject.

We compared three different widely used linear classifiers
implemented in the Scikit-learn Python package (Pedregosa et al.,
2011). In Linear Discriminant Analysis (LDA), a set of uncorrelated
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linear functions, known as discriminant functions, that maximize
the distance between the mean vectors of classes of objects are
learnt from the training data and applied on the test data. Support
Vector Machines (SVM) aim to maximize the margin of the hyper-
plane that separates two classes in a linear or non-linear manner,
while logistic regression (LR) predicts the probability of a binary
target variable using logit transformation of the data. On LDA, prior
probabilities between subject groups were set equal, and least-
squares solution, optimal for binary classification task, combined
with Oracle Shrinkage Approximating (OAS) covariance estimator
was used as a solver (Chen et al., 2010). OAS and the least-
squares solver allow the data to diverge from Gaussian distribu-
tion. For SVM, we used a linear kernel with a regularization param-
eter of 0.025. On LR, maximum iterations were raised to 2000 to
ensure proper convergence.

Each classifier was evaluated through leave-one-out-cross-
validation (LOOCV) protocol. In LOOCV, one subject represents
the test group at each time, while the other subjects form the train-
ing group. The number of true (T) and false (F) positive (P) and neg-
ative (N) cases (TP/N and FP/N) were evaluated and used to
compute the classifier’s accuracy, and the results were summa-
rized visually with receiver operating characteristic (ROC) curves.

The training data were normalized so that each spatial-
frequency feature, i.e., frequency band per channel over the sub-
jects had zero mean and one standard deviation (SD). Subse-
quently, the normalization was applied to the test data. The data
set for each LOOCV evaluation was formed by using one randomly
chosen power spectrum (i.e., one 60-sec interval) per each subject.
This procedure was repeated 50 times for each classifier to
decrease the possibility of selection bias. The final prediction label
was assigned based on the repeated runs.

2.5. Statistical analysis

To examine the effect of each classifier (LDA, SVM, LR), experi-
mental condition (EC, EO) and sensor type (planar gradiometer,
magnetometer) on the accuracy results, we fitted a binomial
mixed-effects model. Here subjects, using the within-subject accu-
racies over 50 repetitions per condition (see above), were treated
as random effects and experimental factors as fixed effects. The
significance of each factor was determined using the likelihood
ratio test. The same binomial mixed-effect model was used for
comparing the effect of classifier and experimental condition
between the two data sets. The statistical analysis was conducted
using R programming language (R Core Team, 2020). The signifi-
cance level was set to 0.01.

Mann-Whitney U test was used for comparing the RMPCQ
scores between patients classified correctly and incorrectly within
the data sets. Magnetic resonance images (MRI), available for all
patients, were used for comparing whether the presence of struc-
tural trauma lesions (detectable vs. non-detectable lesion) corre-
lated with the patients’ average classification accuracy, using
Chi-square statistics and Pearson correlation coefficient.
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2.6. Comparison with traditional sensor-level analysis

In addition to the ML analyses above, sensor-level analysis was
conducted in all patients similarly to Kaltiainen et al. (2018). Each
patients’ power spectra were compared with the average spectra
calculated over a control group of 139 healthy adults (Renvall
et al., 2012): Spectral power exceeding that of the control subjects
by 2 SD in the low-frequency range (3–7 Hz) of the EC condition
was considered pathological. Fig. 1 depicts an example of EC con-
dition on a demonstrative channel in one patient, compared with
the mean (+2 SD) activity over the control group. We then studied
whether ML-based analyses recognized more patients than tradi-
tional analysis using binomial test. Chi-square statistics were used
to evaluate if the classification using traditional analysis correlated
with the ML results.
2.7. Comparison of narrow vs. wide band activity

Previous electrophysiological studies have emphasized the
presence of low-frequency activity (<7 Hz) as a biomarker for mTBI
(Lewine et al., 1999; Lewine et al., 2007; Huang et al., 2009; Huang
et al., 2014; Kaltiainen et al., 2018), but higher frequencies may
also show changes after brain injury (Korn et al., 2005; Dunkley,
2015; Koufen and Dichgans, 1978; Tebano et al., 1988; Zhang
et al., 2020). Therefore, we compared the performance of the pre-
sent classifiers when the full power spectrum (1–87.8 Hz) was
included vs. when the analysis was limited to low frequencies
(1–8 Hz) and to the alpha–beta band (�8–30 Hz); the Wilcoxon
signed-rank test was applied on the individual classification
accuracies.

The ML methods applied do not give direct information about
which frequency bands are the most significant for the classifica-
tion performance. The contribution of different bands was tested
by performing the above analysis by adding one band at a time
up to the full 21 bands (1–87.8 Hz) in a random order 50 times.
3. Results

3.1. Effect of sensor type, experimental condition and classifier

Fig. 2 demonstrates the distribution of discriminant function
values for mTBI patients and control subjects for both data sets
in the EC condition when using gradiometer data and LDA classifier
(50 repetitions per subject). Fig. 3 and Table 2 depict the classifica-
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Fig. 1. Example of one patient (from data set A) exhibiting excessive low-frequency
activity compared with a healthy control data set (HC, N = 139), peaking at 5–6 Hz
over the left temporal area. The insert refers to the location of the depicted channel.
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tion results for all three classifiers, separately in each experimental
condition and for each data set.

The experimental condition was a major factor for the classifi-
cation accuracy: The probability for the subjects to be classified
correctly was significantly higher in the EC than EO condition (data
set A: Z = �4.60, P < 0.001; data set B: Z = �3.80, P < 0.001). How-
ever, the effect of the classifier was not significant (likelihood test,
data set A: v2 = 0.723, P = 0.70; data set B: v2 = 2.58, P = 0.28), and
there was no significant interaction between the experimental
condition and classifier (data set A: v2 = 0.064, P = 1.0; data set
B: v2 = 0.53, P = 0.77). The classification accuracies of the data sets
did not differ from each other in this respect (effect of experimen-
tal condition v2 = 0.94, P = 0.33; classifier v2 = 2.14, P = 0.34). The
mean classification accuracies varied from 63% (median 80%) to
67% (median 95%) for data set A, and from 63% (median 85%) to
66% (median 88%) for data set B when using gradiometer data on
the EC condition.

When we compared the classification accuracies with and with-
out including the sensor type in the model, the difference was not
significant (P > 0.1), suggesting that the choice of sensor combina-
tion did not play a significant role in the results. As the responses
over the sensors and of their combination are, by nature, highly
correlated, the rest of the analysis was applied on gradiometer data
alone, taken the generally lower noise-sensitivity of gradiometers
compared with magnetometers.
3.2. Diagnostic value of the ML methods

The diagnostic ability of the applied ML methods was moderate,
as shown by the receiver operating characteristic (ROC) curves in
Fig. 4. The area under the curve values (AUCs) varied between
0.6 and 0.75. For data set A, the LDA classifier had the highest
AUC of 0.74, whereas for data set B the corresponding AUC was
0.65. Notably, the algorithms performed very similarly within both
data sets, and the AUC values did not differ significantly from each
other between the data sets for any of the ML classifiers
(ZLDA = 1.233, P = 0.11; ZLR = 0.852, P = 0.20; ZSVM = 0.255, P = 0.40).
3.3. Comparison of the ML-based MEG results with the patients’
behavioral and structural data

The RMPCQ scores of the patients varied from 1 to 36 (17 ± 3;
ave ± SEM, data set A), and from 0 to 38 (16 ± 2, data set B): the
most prominent symptoms reported by the subjects were fatigue
(A: 16/20 subjects, B: 22/25 subjects), poor concentration (A:
16/20, B: 17/25), and forgetfulness (A: 12/20, B: 18/25). The
RMPCQ score was not a significant discriminating factor between
the patients classified correctly and incorrectly in either of the data
sets: For example, in the EC condition using the LDA classifier, the
average RMPCQ scores were 17 (A) and 14 (B) for patients classi-
fied correctly, and 17 (A) and 18 (B) for patients classified incor-
rectly (data set A: U = 45.5, P = 1.0; data set B: U = 61.0, P = 0.45).

Visible MRI trauma lesions were observed in 12 of the 20
patients in data set A and in 9 of the 25 patients in data set B. Based
on the proportion of patients with detectable lesions in each data
set, we expected, for the LDA classifier in the EC condition, on aver-
age eight subjects (�12/20 � 0.67 � 20 subjects) with detectable
lesions to be found among the correctly classified patients in data
set A and five in data set B. We observed seven (A) and six (B)
subjects with detectable lesions among the correctly classified
subjects, but taken the small size of the patient groups, statistical
evaluation cannot be reliably conducted here. There was no obvi-
ous correlation between the within-subject classification accura-
cies and visible MRI trauma lesions (Pearson correlation
coefficient �0.07 and 0.28 for data set A and B, respectively).
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Fig. 3. Mean classification accuracies for data sets A (black) and B (white) for the
three classifiers and the two experimental conditions (EC = eyes closed, EO = eyes
open). LDA = linear discriminant analysis; SVM = support vector machine;
LR = logistic regression.

Table 2
Summary statistics of the classification results for each classifier in each experimental cond
analysis; SVM = support vector machine; LR = logistic regression; SEM = standard error o

DATA SET A CLASSIFIER EXP CONDITION MEAN ACCURACY

LDA EC 0.67
LDA EO 0.44
SVM EC 0.66
SVM EO 0.42
LR EC 0.63
LR EO 0.40

DATA SET B CLASSIFIER EXP CONDITION MEAN ACCURACY

LDA EC 0.63
LDA EO 0.48
SVM EC 0.65
SVM EO 0.52
LR EC 0.65
LR EO 0.52
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3.4. Comparison of the ML-based and traditional MEG analysis

In our previous study on data set A, MEG sensor-level analysis
revealed abnormal low-frequency activity (LFA, 3–7 Hz) in six
patients out of 20 measured within two months after the trauma
(Kaltiainen et al., 2018). Using the same criteria, data set B here
revealed abnormal activity in 3/25 patients. All the present ML
methods outperformed the traditional LFA analysis. For example,
LDA in the EC condition correctly classified 13 (15) patients in data
set A (B), performing thus significantly better than the traditional
sensor-level analysis (data set A: P = 0.001; data set B: P < 0.001).

Interestingly, the ML methods recognized partly different
patients than the traditional sensor-level analysis. Patients found
by the ML methods did not correlate with the observed LFA (data
set A v2 = 0.95, P = 0.36; data set B v2 = 1.01, P = 0.31): three
out of six (one out of three) subjects with visible LFA in data set
A(B) were found with the ML algorithms.

3.5. Comparison of wide vs. narrow band classifier performance

When the analysis was restricted to low frequencies alone (1–
8 Hz), the median classification accuracy for LDA was 59 % for data
set A, and 91 % for data set B, while the wide-band (1–88 Hz)
spectra yielded the accuracies 95 % (data set A) and 84 % (data
set B). When the analysis was restricted to the alpha–beta band
(8–30 Hz), the median accuracies were 93 % (data set A) and 79
ition. 25th and 75th refer to the corresponding percentiles. LDA = linear discriminant
f the mean.

MEDIAN ACCURACY SEM 25TH 75TH

0.95 0.06 0.22 1.00
0.34 0.07 0.00 0.97
0.88 0.07 0.17 1.00
0.17 0.07 0.00 0.96
0.80 0.06 0.19 1.00
0.12 0.07 0.00 0.96

MEDIAN ACCURACY SEM 25TH 75TH

0.85 0.06 0.14 1.00
0.29 0.06 0.02 1.00
0.88 0.06 0.18 1.00
0.59 0.06 0.00 1.00
0.88 0.06 0.23 1.00
0.45 0.06 0.00 1.00
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% (data set B). The accuracies of the narrow-band analyses did not
differ from those obtained with wide-band analysis for either of
the data sets (P > 0.06). Permutation analysis showed that the
mean classification accuracy appeared to increase as more bands
were included in the analysis, but this did not reach statistical sig-
nificance (see Fig. 5).

4. Discussion

In the present study, we compared the performance of three
widely applied linear machine learning (ML) methods (linear dis-
criminant analysis (LDA), Support Vector Machine (SVM), and
logistic regression (LR)) for separating mTBI patients from healthy
controls based on their resting-state MEG power spectra. We used
two independent data sets recorded with different devices and in
different measurement environments. All three classifiers sepa-
rated the patients from controls clearly better than traditional
MEG analysis that is based on detecting excessive low-frequency
activity. Between the three classifiers, the performance did not sig-
nificantly differ. However, the eyes-closed (EC) data yielded signif-
icantly better classification accuracies than eyes-open (EO) data.
The results were comparable in two different patient populations
recorded at two different sites, highlighting the robustness of our
analysis method.

4.1. Three common machine learning classifiers produced
corresponding results irrespective of measurement site and
outperformed traditional sensor-level analysis

Traumatic brain injuries, even mild, form a heterogenous group
of patients when it comes to traumamechanisms, impact sites and,
therefore, quality and location of possible changes in brain activity.
This variety pinpoints the need to simultaneously explore a wide
selection of potentially significant features in the data, which could
be achieved with the help of ML models. Here we tested the perfor-
mance of three commonly used ML classifiers and hypothesized
that the classification accuracy would not be highly dependent
on the exact ML approach. The similar performance of the classi-
fiers can be expected given our dichotomous outcome variable (pa-
tients vs. controls), and the analogous linear decision boundaries
between the used algorithms. The posterior probabilities for both
LR and LDA are linear functions of the data, differing only in their
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parameter estimation techniques and exact model assumptions.
Furthermore, when applicable, LR and SVM tend to find the same
separating hyperplane (Hastie et al., 2001).

The performance of all three classifiers was similar for both
sites and data sets suggesting that the approach is reliable and
replicable across data sets. Poor reproducibility of the results is a
well-known problem in neurotrauma research (Huie et al., 2018),
which needs to be solved before any novel method can be taken
into clinical practice. Several ML approaches have been applied
on neurophysiological data obtained from mTBI patients, but the
results have been mixed and difficult to replicate (Thatcher et al.,
1989; Trudeau et al., 1998), with high false-positive rates up to
52% (Thornton 1999). Recently, a ML paradigm correctly classified
75% of the mTBI patients at 5–60 months after trauma (Lewine
et al., 2019) but the authors suggested the need for earlier evalua-
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tion with respect to the trauma. We tested here a simple, straight-
forward analysis pipeline that could be easily used at different sites
and could be applicable also for clinical use. The majority of earlier
MEG studies using ML methods have relied on rather complicated
connectivity analyses (Antonakakis et al., 2016; Vakorin et al.,
2016; Vergara et al., 2017, 2018), which might generate problems
when applied to independent data sets with, e.g., different signal-
to-noise characteristics (Allen et al., 2021).

All the applied methods yielded significantly better classifica-
tion accuracy using resting-state EC data compared with EO data.
The EC condition may contain less blink and muscle artifacts than
the EO condition even after careful artifact management, and thus
include less features unrelated to neuronal activity. The EO condi-
tion, as a state of higher arousal (e.g., Barry and Blasio 2017), may
also introduce more variance within and between individuals that
is harder to capture with the models. The EC condition promoting
drowsiness may additionally boost low-frequency activity both in
healthy subjects (Geller et al., 2014) and especially in the patients,
and modulate higher frequency (>30 Hz) activity (Geller et al.,
2014), which has been demonstrated to be increased in mTBI
patients (Mišić et al., 2016; Huang et al., 2019 and 2021).
4.2. Mild traumatic brain injury causes changes on the oscillatory
activity at multiple frequency bands

Previous studies have revealed excess low-frequency activity
early after the trauma, with a tendency for the activity to normal-
ize during the successive months (Kaltiainen et al., 2018), but
detectable also later after trauma in still symptomatic patients
(Lewine et al., 1999; Lewine et al., 2007; Huang et al., 2009;
Huang et al., 2014). Besides low frequencies, mTBI-related alter-
ations in oscillatory activity have been reported also, e.g., at beta
(15–30 Hz) and gamma (30–90 Hz) bands (Huang et al., 2017,
2019 and 2020). Decrease in alpha peak frequency as well as alpha
and beta power have also been reported (Dunkley, 2015; Popescu
et al., 2016; Zhang et al., 2020).

Here, wide-band (1–88 Hz) spectral analysis yielded similar
results to using only a low-frequency band (1–8 Hz) or a combined
alpha–beta band (8–30 Hz), suggesting that changes in the oscilla-
tory brain activity after mTBI occurred over a wide frequency
range. Indeed, a deep-learning neural network approach using a
wide frequency band yielded better classification performance
compared to any narrow band, even if the most significant features
were found at low frequency (<8 Hz) and gamma bands (>30 Hz;
Huang et al., 2021).

The ML methods presented here significantly outperformed tra-
ditional sensor-level spectral analysis (Kaltiainen et al., 2018) in
separating patients from controls. However, some of the patients
recognized on traditional sensor-level analysis based on low-
frequency activity (3–7 Hz) alone were incorrectly classified by
the ML method, suggesting that the classification indeed relied
on wide spectral content.
4.3. Machine learning approaches may provide increased sensitivity to
clinical measurement practice

Our study demonstrates that ML applied on two different data
sets obtained from two different measurement sites produced
comparable and robust results, suggesting a possibility to utilize
such methods also in clinical practice. The straightforward
sensor-level analysis pipeline is easily replicable at different sites
by different analysts. Information on detectable functional changes
after mTBI can provide tools for selecting those patients who are
more likely to benefit from closer follow-up, allowing longer recu-
peration period and gradual return to productive activities.
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We recruited our patients in the sub-acute phase quite early
after injury. As the recovery after mTBI is often rapid and complete,
also possible abnormalities in oscillatory brain activity can be
expected to be very mild and transient. Therefore, we did not pre-
sume perfect classification performance in this sub-acute measure-
ment setting. Here, as well as in some other studies assessing mTBI
patients, there was no clear association between subjective symp-
tom score and classification results (Lewine et al., 2007; Kaltiainen
et al., 2018). This emphasizes the various possible etiologies of the
post-traumatic symptoms after mTBI, and the difficulties in trying
to objectively assess their constellation. The presence or absence of
MRI lesions did not significantly correlate with the correct classifi-
cation performance either, further highlighting the added value of
functional imaging in the follow-up after mTBI. In the future,
assessing recordings during cognitive tasks might aid in combining
patients’ cognitive complaints with objective test metrics
(Kaltiainen et al., 2019).
4.4. Limitations of the study

Our patient population was heterogeneous: Some of the
patients were already well recuperated at the time of the measure-
ment session, thus lowering the probability for correct classifica-
tion performance. Furthermore, measuring a vast amount of
mTBI patients with MEG early after injury is not feasible consider-
ing the availability of MEG instrumentation, cost of measurements,
and generally good prognosis of the patient population. Therefore,
measuring patients with a high symptom score at sub-acute stage
might help to distinguish the patients with need for further follow-
up, rehabilitation and support. EEG could provide a cost-effective
and readily available method for screening purposes in patient
groups with a risk for long-term complications. Data from a small
cohort (N = 6) suggested that MEGmay provide superior sensitivity
over EEG (Li et al., 2015), but this issue should be addressed with
simultaneous MEG and EEG measurements in larger patient
cohorts.
5. Conclusion

Conventional ML approaches classified mTBI patients on the
basis of MEG resting-state power spectra at subacute stage (<2
months after the trauma) with median accuracy of 80–95%, with-
out significant differences between three different classifiers. The
classifiers performed similarly for two independent data sets, and
drastically outperformed the earlier expert-based analysis. The
applied methods yielded significantly better classification accuracy
on EC than EO data which should be taken into account when
developing clinical measurement pipelines.

Our present results suggest that - when measured early after
the trauma - rather simple power spectral estimates combined
with ML approach can classify mTBI patients with high accuracy,
with high promise also for clinical use.
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