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Abstract

Deep brain stimulation (DBS) has proven its clinical efficacy in Parkinson’s disease (PD),

but its exact mechanisms and cortical effects continue to be unclear. Subthalamic (STN)

DBS acutely modifies auditory evoked responses, but its long-term effect on auditory corti-

cal processing remains ambiguous. We studied with magnetoencephalography the effect of

long-term STN DBS on auditory processing in patients with advanced PD. DBS resulted in

significantly increased contra-ipsilateral auditory response latency difference at ~100 ms

after stimulus onset compared with preoperative state. The effect is likely due to normaliza-

tion of neuronal asynchrony in the auditory pathways. The present results indicate that STN

DBS in advanced PD patients has long-lasting effects on cortical areas outside those con-

fined to motor processing. Whole-head magnetoencephalography provides a feasible tool

to study motor and non-motor neural networks in PD, and to track possible changes related

to cortical reorganization or plasticity induced by DBS.

Introduction

Parkinson’s disease (PD) is a progressive extrapyramidal movement disorder with main motor

symptoms of rigidity, hypokinesia, and resting tremor. PD patients often suffer from a broad

spectrum of non-motor signs, which may precede appearance of motor symptoms [1]. Degen-

eration of dopaminergic neurons in the substantia nigra is known to be mainly responsible for

the parkinsonian symptoms, but the disease affects also cholinergic, serotonergic, and norad-

renergic neurotransmission in cortical areas outside the motor system [2], likely related to the

wide variety of patients’ symptom profiles.

Despite optimal oral drug treatment, about 90% of PD patients develop severe motor fluctu-

ations and/or dyskinesia within 5–10 years from the diagnosis [3]. In these patients, deep

brain stimulation (DBS) of the subthalamic nucleus (STN) has been demonstrated to be an
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effective treatment [4–6]. However, the exact mechanisms of DBS have remained unclear. So

far, there is no consensus whether the effect of DBS is local or system-wide, or whether DBS

elicits mainly inhibition or excitation of the target nuclei [7–9]. It has been even hypothesized

that DBS could be neuroprotective and slow down the degeneration of dopaminergic neurons

in PD [10]. Recent observations from animal models suggest that the efficacy of DBS is likely

to be mediated by multifactorial mechanisms, including immediate neuromodulatory effects

such as inhibition of the neural soma and excitation of axons, and long-term effects such as

neuronal reorganization, and synaptic plasticity [11]. DBS does not, however, arrest or reverse

PD progression [12]. DBS also exerts effects on non-motor systems. For example, sleep was

improved and anxiety alleviated by DBS during a 4-year follow-up in PD [13]. So far, no evi-

dence on neuronal plasticity induced by DBS in humans is available.

Magnetoencephalography (MEG) provides a non-invasive and patient-friendly neuroimag-

ing method for addressing possible cortical plasticity induced by DBS. The stimulator, how-

ever, causes strong artifacts in MEG recordings. With current data analysis methods, magnetic

interference originating from sources close to the MEG sensors can be effectively suppressed

[14, 15]; such methods have earlier been successfully used to remove magnetic artifacts caused

by DBS [16–21] and vagus nerve stimulation (e.g., [22]). This approach permits, with high

temporal and spatial resolution, noninvasive measurements of cortical activity and of its possi-

ble modulations induced by DBS both within and outside the motor system. Indeed, MEG

responses to speech sounds were recently demonstrated to be modified by DBS [23].

Alterations in auditory processing have been especially frequently described in PD patients

(for a recent review, see [24]). Patients with PD have been demonstrated to suffer from

impaired hearing compared with age-matched healthy control subjects (e.g., [25]), and a previ-

ous MEG study suggested changes in the cortical processing of auditory information in PD

patients without DBS [26]. DBS was subsequently shown to enhance the strength of the most

prominent auditory evoked fields (AEFs) at ~100 ms after stimulus onset (N100m) [18], but

the possible long-term modulation of auditory cortical responses by DBS has not been

reported before.

Here we studied whether STN DBS has long lasting effects on auditory cortical processing

in patients with advanced PD. We explored cortical activity elicited by simple tone stimuli,

which produce well-characterized AEFs [27, 28]. We hypothesized that the long-term STN

stimulation would enhance cortical auditory processing. Specifically, we anticipated that the

STN stimulation would modify parallel cortical auditory processing between the hemispheres,

in line with results on patients with unilateral conductive hearing loss demonstrating modified

AEFs after middle ear surgery [29]. Particularly the latency differences between the contra-

and ipsilateral auditory responses, i.e., the interhemispheric asynchrony displays reorganiza-

tion along with improved hearing [30]. Moreover, as AEF amplitudes display a large interindi-

vidual variability [31, 32], and they are sensitive to head movements in a long-term follow-up

even when movement compensation is applied [33], we focused our analysis in DBS patients

on the interhemispheric latency differences.

Our results show that the STN stimulation modifies parallel cortical auditory processing

between the hemispheres, in line with the earlier results on patients with unilateral conductive

hearing loss [29, 30].

Materials and methods

Twenty-two (22) advanced PD patients who were screened for DBS implantation (including

head MRI, levodopa challenge test, and thorough neuropsychological testing) originally partic-

ipated in the study. None of the patients had dementia or severe depression. Clinical details of
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the patients are shown in Table 1. The study was approved by the Ethics Committee of Hel-

sinki University Central Hospital and all patients gave informed written consent prior the

study.

The data of seven patients were rejected from further analysis. Three of these patients did

not want to participate in the follow-up measurement at six months. One patient had a sub-

dural haematoma due to a fall. The DBS device was removed from one patient due to an infec-

tion of the subcutaneous internal pulse generator. In the other two patients (one with a

temporal bone titanium panel and another with exceptionally strong DBS artifacts) MEG

amplifiers were saturated during the measurements, excluding the use of the MEG data. Three

of the remaining 15 patients did not tolerate MEG measurement at six months when DBS was

off, but their data during DBS on were included in the analyses.

The mean age of the remaining 15 patients (four females) was 55 years (range 36–67 years);

see Table 1. They had received a diagnosis of PD on average 13 years (range 6–24 years) before

the implantation of the bilateral STN DBS (Activa PC1, Medtronic, Minneapolis, Minnesota,

United States). The MEG measurements were conducted 0.5–13 months (mean 7 months)

before the DBS implantation and at 5–11 months (mean 7 months) after it. During the MEG

recordings, the patients had their normal medication on (see Table 1). The mean Hoehn and

Yahr scores [34] were 2.5 (range 2–3) both at the baseline and at seven months when medica-

tion was off and DBS on, suggesting bilateral nature of the disease, without or with only mild

impairment of balance. The DBS frequency was adjusted to 130 Hz before MEG measure-

ments to avoid interference with the head position indicator (HPI) coil signals. All patients

were kept at their original stimulation settings during the MEG recordings. Monopolar DBS

Table 1. Clinical details of patients and DBS parameters.

MEG measurements UPDRSIII LEDD (mg)� DBS

Patient Sex Age PD duration

before

operation (yrs)

Time before

DBS operation

(mnths)

Time after DBS

operation

(mnths)

Before

DBS

After

DBS

Before

DBS

After

DBS

Voltage,

right/left

(V)

Bi- or

monopolar,

right/left

Freq

(Hz)

Pulse

width

right/left

(μs)

1 F 63 24 5 7 32 35 90 760 3.6/1.6 bi/bi 160 60/60

2 M 57 15 11 6 32 21 1 618 1381 2.5/2.5 mono/bi 130 60/60

3 M 63 8 3 5 37 29 925 639 2.5/2.5 mono/mono 160 60/60

4 F 56 18 0,5 7 74 34 1562 1386 2.6/2.7 mono/mono 130 60/60

5 M 62 17 8 5 37 33 1408 1407 3.6/3.1 mono/mono 130 60/60

6 M 67 9 5 7 46 25 1679 480 2.6/2.9 mono/mono 150 120/60

7 F 66 16 11 6 31 38 1292 1000 2.5/3.6 mono/bi 130 60/60

8 M 36 7 1 5 68 43 1 574 210 3.2/3.2 mono/mono 130 60/60

9 M 42 10 3 6 62 32 765 1497 3.2/3.2 mono/mono 130 60/60

10 M 45 9 5 5 31 29 1 481 1255 3.5/3.8 bi/mono 130 60/60

11 F 63 13 9 7 23 16 658 366 2.8/2.9 mono/mono 130 60/60

12 M 49 14 8 11 51 24 1 263 1164 3.5/3.1 bi/mono 150 60/60

13 M 47 8 3 6 37 24 655 580 2.3/2.5 mono/mono 180 60/60

14 M 42 6 5 6 44 20 1338 1384 3.5/2.0 mono/mono 130 60/60

15 M 62 18 4 7 27 20 1158 560 2.9/3.0 mono/mono 130 60/60

MEAN 55 13 7 7 42 28 1222 938 3.0/2.8 - 140 64/60

DBS, deep brain stimulation; UPDRS, Unified Parkinson´s Rating Scale; Freq, stimulation frequency

� To calculate the levodopa equivalent daily dose (LEDD), the following formula was used:

100 mg l-dopa = 130 mg contolled-release l-dopa = 70 mg l-dopa + COMT inhibitor = 1 mg pramipexole = 5 mg ropinirole = 4 mg rotigotine.

https://doi.org/10.1371/journal.pone.0264333.t001
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induces more high-frequency artifacts than bipolar one, but they can be effectively removed by

filtering (see, e.g.,[18]). Three in-hospital programming sessions with medication off preceded

the DBS/MEG measurement for verifying the optimal DBS response.

The measurements were performed with the 306-channel Elekta Neuromag Vectorview1

MEG device (Elekta Oy, Helsinki, Finland) in a magnetically shielded room (Euroshield, Eura,

Finland). The baseline MEG was measured before the DBS implantation, and the follow-up

measurements were conducted at about seven months (see above) after the operation, both with

DBS on and off. During the MEG measurement, an experienced nurse accompanied the patient

in the magnetically shielded room. Auditory stimulation consisted of 1-kHz sinusoidal 50-ms

tone pips delivered through plastic tubes to each ear separately. Stimulus intensity was adjusted

to be at a comfortable hearing level of> 60 dB HL, and all the patients reported having heard

the pips as equally strong on both ears. The auditory stimulation was implemented as a part of a

multimodal stimulation sequence that included also somatosensory and visual stimuli. The dif-

ferent stimulus types were presented in a pseudorandom order so that the same stimulus was

not allowed to occur more than twice in a row to exclude formation of possible sensory memory

traces. This resulted in a mean interstimulus interval (ISI) of 5.5 s for each stimulus type.

The recording passband was 0.03–330 Hz with a sampling rate of 1011 Hz. A vertical elec-

tro-oculogram (EOG) was recorded simultaneously for extracting eye-movement artifacts.

The location of the head was determined by four indicator coils placed on the scalp; the exact

head position with respect to the MEG sensor array was determined by briefly feeding current

to the marker coils before the actual measurement. The location of the coils with respect to

head landmarks was determined with a 3-D digitizer (Fastrak1, Polhemus, Inc., Colchester,

Vermont, United States).

The strong magnetic artifacts caused by DBS were suppressed by the spatiotemporal signal

space separation method (tSSS; [14]) using an 8-s time window and a subspace correlation

limit of 0.9 [35]. The effect of tSSS on AEFs has been visualized and discussed in [18]. 111 ± 18

(mean ± SD) artifact-free auditory responses were averaged per stimulated ear. The responses

were averaged from 100 ms before the stimulus onset to 500 ms after it, setting as baseline the

100-ms interval immediately preceding the stimulus onset, and filtered off-line at 1–40 Hz.

The 100-ms AEFs (N100m) we first analyzed at the sensor level. The peak response ampli-

tudes were determined by finding the absolute maxima of evoked signals in a time window

80–130 ms after the stimulus onset at the gradiometer channels. The response latencies and

amplitudes were then measured from the vector sum

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@Bz
@x

� �2
þ @Bz

@y

� �2
r

of the gradiometer pair

showing the maximum signal. In signal strength comparisons, the vector sums simplify the

analysis when the orientation of the neural current changes as a function of time, with only

minor accompanying changes in the source location [36; for similar approach, see [37]]. In

such a case, the amplitude measurements from any single channel can be misleading.

Subsequently, the cortical sources of the N100m responses were searched separately for

contra- and ipsilateral hemispheres using a subset of 10–15 gradiometer pairs in both hemi-

spheres, to adequately cover the loci of the response maxima by means of guided current

modeling (equivalent current dipole [ECD]; [36]), separately for each subject. The model

parameters were optimized for the intracranial space based on individual MR images that

were available for all subjects. The N100m sources were estimated by a sequential ECD fitting

using a 1-ms interval within the time period of 80–130 ms after the stimulus onset, separately

for the data measured before DBS implantation and with DBS both on and off.

A two-dipole model (one in each hemisphere) was used to investigate the effect of DBS on

AEFs in all three conditions (preoperational, DBS on, DBS off). The ECD corresponding to
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the strongest source (and thus with best signal-to-noise ratio) was chosen from the three con-

ditions (preoperational, DBS on, DBS off) to represent the source in all conditions, taken that

the following requirements were fulfilled: 1) The dipole location was stable during 10 ms

around the maximum ECD so that the variation of x-, y- and z-coordinates was less than 5

mm in each direction, 2) the dipole explained over 80% of the measured data variance (good-

ness of fit; g) of the selected channels, and 3) the maximum of the ECD amplitude peaked

within the time period defined previously at the channel level. If two or more dipoles with

same strengths fulfilled the criteria, the one with the best g-value was chosen. Applying the

same source model in each data set minimizes variation due to possible differences between

source models; we assumed that the locations of cortical representations would not be changed

by DBS.

Statistical comparisons of the latency differences between the preoperative AEFs and those

obtained with DBS on and DBS off were performed using non-parametric sign test which does

not assume any particular value distribution. The results were Bonferroni corrected for num-

ber of comparisons (preoperational vs. DBS on, and preoperational vs. DBS off). The results

are reported as mean ± standard error of mean.

Results

Fig 1 demonstrates the AEFs at the sensor level in one patient in all three conditions (preopera-

tive, DBS on, DBS off). After artifact removal by tSSS, sources of AEFs were analyzable in both

hemispheres in all 15 patients, and well explained with two dipoles located bilaterally in the

supratemporal cortices.

Table 2 summarizes the N100m response latencies and amplitudes (mean ± SEM) at the

source level in all conditions (preoperational, DBS on, DBS off) for both stimulated ears. The

ipsi-contralateral difference of N100m peak latencies significantly increased from the preoper-

ative to DBS on condition (pooled across the stimulated ears, 10 ± 2 ms vs. 14 ± 1 ms:

p = 0.036; see Fig 2). The ipsi-contralateral difference of N100m peak latencies did not increase

statistically significantly in the DBS off condition compared to the preoperative state (pooled

across the stimulated ears, 11 ± 1 ms vs. 13 ± 3 ms, p = 0.14).

Motor symptoms were effectively relieved by DBS when off medication. Mean motor Uni-

fied Parkinson’s Disease Rating Scale part III (UPDRS-III) scores were 42 ± 15 before opera-

tion (medication off) and 28 ± 8 after DBS implantation (DBS on and medication off) at six

months (n = 15; p = 0.005). The mean levodopa equivalent daily dose (LEDD) appeared to be

decreased from 1222 ± 352 mg before operation to 938 ± 443 mg after DBS implantation

(n = 15; p = 0.06).

Discussion

This is the first follow-up MEG study with a relatively large number of advanced PD patients

with STN DBS. Our results indicate that DBS induces long-term changes in auditory cortical

processing, shown here by the significant increase in the ipsi-contralateral N100m peak latency

difference for monaural stimulation, suggesting cortical reorganization related to the treat-

ment with STN DBS.

Neural pathways from each ear project bilaterally, but dominantly to the contralateral audi-

tory cortex. In healthy subjects, N100m responses are usually larger and peak earlier for con-

tralateral than ipsilateral stimuli [38–40]. Signs of auditory cortical reorganization have earlier

been observed after unilateral hearing loss: Both patients with congenital conductive hearing

loss and with idiopathic sudden sensorineural hearing loss at adult age have earlier and stron-

ger AEFs in the hemisphere ipsilateral to the stimulated healthy ear [28]. Similarly decreased
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contralateral dominance for unilateral stimulation has been observed in AEP [41] and in func-

tional MRI studies [42] of unilaterally deaf subjects, and in patients with sudden hearing loss

[43, 44]. On the other hand, AEFs were modified after middle ear surgery performed to correct

unilateral conductive hearing loss: N100m peaked significantly earlier in the hemisphere

Fig 1. Sensor level data in one patient. Auditory responses to left-ear stimulation measured before DBS implantation (preoperative)

and after the implantation, both DBS on and off. The arrow indicates the stimulated (left) ear, and the inserts (above) depict the

maximum channels in the contra- and ipsilateral hemispheres. At each sensor triplet, the two left-sided sensors are gradiometers, and

the right-sided one is a magnetometer. The insert (below) demonstrates the single-trial responses (black), their mean (red) and ± 1 SD

(dark blue) in the preoperative condition at the maximum gradiometer channel (marked with asterisk).

https://doi.org/10.1371/journal.pone.0264333.g001
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contralateral to the stimulated ear following the operation, resulting in increased ipsilateral-

contralateral latency difference after correction of the hearing loss [29]. Normalization of the

intrahemispheric asynchrony after behavioral compensation with sound amplification, dem-

onstrated by increased ipsilateral-contralateral latency difference, was recently observed in

patients suffering from unilateral hearing loss [30], qualitatively similarly to our current results

in PD patients. The observed changes were attributed to plasticity of the auditory system for

adapting to the changed auditory environment.

Earlier AEF studies have suggested a direct auditory cortical disruption by PD (e.g., [26]),

possibly related to basal ganglia dysfunction together with the emphasized sensorineural hear-

ing loss in PD [25]. Furthermore, local field potentials recorded from the STN are correlated

with spontaneous ~10-Hz oscillatory activity over the auditory temporal cortices [45, 46]. PD

patients have a clear defect in psychophysical detection of very short temporal gaps within

noise bursts, suggested to be related to impaired detection of amplitude modulations in the

auditory cortex [47]. This deficit has been shown, to some extent, to be compensated with DBS

but not with levodopa therapy, suggesting that it is not related to the dopaminergic deficit in

PD as such [47]. Moreover, the implantation of STN DBS significantly improved, both with

DBS on and off, the abnormal stimulus frequency-related gating of P1/N1 auditory evoked

potentials (AEPs) of PD patients observed before the operation [48]. The observed effect of

DBS was attributed to top-down modulation from the frontal cortex on the temporal auditory

areas [48]. Again, levodopa dosage had no effect on the AEPs.

In our patients after the 6-month DBS therapy, the ipsi-contralateral differences of N100m

response latencies during DBS on were larger than in the preoperative baseline measurements.

This suggests that DBS induced here analogous plastic changes in the auditory system to the

correction of unilateral hearing loss [29, 30]. Our finding supports the notion that DBS can

induce gradual reorganization of neural circuits through enhanced synaptic plasticity and neu-

rogenesis [11, 12]. Direct anatomical projections between auditory cortex and STN are sparse

or absent in animal models [49, 50], but output pathways from the caudal pallidum to auditory

pathways, e.g., to the inferior colliculus, the medial geniculate nucleus, and the temporal cortex

have been reported [51]. In humans, the basal ganglia “gate” auditory inputs at various levels

[52]. The effects of STN DBS on AEFs are probably mediated through such an indirect route.

The study has some limitations to be considered when interpreting the findings. In all

patients, the MEG measurements were done first with DBS on and then DBS off. Shifting the

patient from under the dewar, turning the stimulator off, repositioning the patient and re-

localization of the head position took approximately 10 minutes. DBS off time was thus rela-

tively short: At least three hours of STN DBS off is usually considered to be required to estab-

lish a steady motor DBS off state for efficacy studies [53], and ~50% of the total change in the

motor scales has been estimated to occur within 5 min after DBS is turned off [54]. We, how-

ever, decided to exclude any comparisons between the DBS on and off conditions in the pres-

ent study. Minor changes in the sound intensities between measurement conditions are

Table 2. N100m response latencies and amplitudes.

Condition N100m latencies (ms): Left-ear

stimulation

N100m latencies (ms): Right-ear

stimulation

N100m amplitudes (nAm): Left-

ear stimulation

N100m amplitudes (nAm): Right-

ear stimulation

Ipsi Contra Ipsi Contra Ipsi Contra Ipsi Contra

Preoperational

(n = 15)

109 ± 3 97 ± 2 106 ± 2 97± 3 48 ± 6 61 ± 5 51 ± 7 59± 7

DBS on (n = 15) 109 ± 3 93 ± 2 107 ± 2 95 ± 2 41 ± 5 66 ± 5 48 ± 6 58± 8

DBS off (n = 12) 112 ± 6 93 ± 3 105 ± 4 98 ± 4 39 ± 6 58 ± 6 36 ± 4 42± 8

https://doi.org/10.1371/journal.pone.0264333.t002
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possible, but very unlikely to affect our results on the N100m latencies that are known to satu-

rate at sound intensities above 50 dB HL [55]. Although the number of patients in our study is

in the range of previous reports of the effects of DBS on brain electrophysiology, future studies

on larger patient populations and in different sensory systems are needed to better understand

the neuronal reorganization related to DBS in PD.

Fig 2. The interhemispheric latency difference increased from preoperative to postoperative DBS on condition.

Bottom: N100m source strengths as a function of time in one subject to both left- (blue) and right-sided (red) auditory

stimulation in preoperative (full line), DBS on (dashed line), and DBS off (dotted line) conditions. Top: Comparison of

the interhemispheric latency differences in both hemispheres in preoperative (full line) and DBS on (dashed line)

conditions (n = 15), and in preoperative (full line) and DBS off (dotted line) conditions for the subjects who tolerated

DBS off condition (n = 12).

https://doi.org/10.1371/journal.pone.0264333.g002
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Conclusions

Our results demonstrate that MEG can be used to follow possible modulations of cortical

evoked activity related to DBS in PD patients. Particularly, the present results suggest that the

DBS normalizes neuronal asynchrony in the central auditory pathways, reflected here as

increased contra-ipsilateral N100m response latency differences compared with the preopera-

tive state. MEG can thus provide important insight into DBS-induced plastic changes and

reorganization of non-motor neural networks.
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