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A B S T R A C T

Transcranial magnetic stimulation (TMS) protocols often include a manual search of an optimal location and
orientation of the coil or peak stimulating electric field to elicit motor responses in a target muscle. This target
search is laborious, and the result is user-dependent. Here, we present a closed-loop search method that utilizes
automatic electronic adjustment of the stimulation based on the previous responses. The electronic adjustment is
achieved by multi-locus TMS, and the adaptive guiding of the stimulation is based on the principles of Bayesian
optimization to minimize the number of stimuli (and time) needed in the search. We compared our target-search
method with other methods, such as systematic sampling in a predefined cortical grid. Validation experiments on
five healthy volunteers and further offline simulations showed that our adaptively guided search method needs
only a relatively small number of stimuli to provide outcomes with good accuracy and precision. The automated
method enables fast and user-independent optimization of stimulation parameters in research and clinical ap-
plications of TMS.
1. Introduction

Neurons in the brain can be excited by transcranial magnetic stimu-
lation (TMS). In TMS, a strong current pulse is fed into a coil placed on
the scalp to induce an electric field (E-field) in the cortex (Barker et al.,
1985). In addition to its use in neuroscience (Lisanby et al., 2000;
Valero-Cabr�e et al., 2017), TMS is increasingly used in clinical applica-
tions ranging from preoperative mapping of motor and speech areas to
treatment of various brain disorders such as depression and pain (see,
e.g., Lefaucheur and Picht, 2016; Lefaucheur et al., 2014).

A typical TMS session starts with searching for the optimal stimula-
tion parameters, such as location and orientation of the coil or the E-field
maximum, to activate a muscle under investigation most effectively.
These optimal stimulation parameters are often referred to as the motor
hotspot and defined as the stimulation location and orientation that elicit
the largest motor evoked potentials (MEP) measured by electromyog-
raphy (EMG) (Rossini et al., 2015), but the shortest MEP latency or the
lowest motor threshold can also be used in the definition (Rossini et al.,
1994). The motor threshold (MT) is often defined as the stimulation
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intensity that produces an MEP exceeding a predefined amplitude with a
probability of 50%. The E-field at the cortical motor hotspot due to
stimulation with MT intensity may serve as a reference when adjusting
the stimulation intensity at any cortical site. Therefore, the target search
in the motor cortex is often performed even when the actual stimulation
site is outside the primary motor cortex.

Optimal stimulation parameters are often searched for bymeasuring a
collection of MEPs when stimulating the cortex around the expected
motor representation area, with manually varied stimulation parameters:
the location, intensity, and direction of the maximum E-field. The chal-
lenge is that, even with fixed stimulation parameters, the MEP amplitude
is a random variable, i.e., it varies significantly from stimulation to
stimulation due to, for example, excitability fluctuations along the cor-
ticospinal tract (Kiers et al., 1993). Therefore, target search is laborious
and time-consuming. The target search involves also subjective decision
making based on the operator’s experience, which makes its accuracy
and repeatability (over operators) questionable. Sometimes, the target
may reside in an unexpected location (Ahdab et al., 2016; Bulubas et al.,
2016), in which case the operator’s expert opinion may lead to biased
Aalto University School of Science, P.O. Box 12200, FI-00076 AALTO, Finland.

2020

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:jaakko.nieminen@aalto.fi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.117082&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.117082
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2020.117082


A.E. Tervo et al. NeuroImage 220 (2020) 117082
localization results.
To make the target search less user-dependent, Meincke et al. (2016)

and Harquel et al. (2017) automated the process with a robotically
controlled TMS coupled in a closed loop with EMG feedback. Meincke
et al. (2016) defined the target as the stimulation coil location leading to
the lowest MT; their algorithm started with finding an MEP-positive area
within a search grid and continued with evaluating the MT at each
MEP-positive site. They reported millimeter-scale repeatability in target
localization with an automated protocol that took approximately an hour
to complete. Harquel et al. (2017) developed an algorithm to find the
location maximizing the MEP amplitude using a probabilistic Bayesian
approach in which MEP amplitudes were modeled with a 2-dimensional
Gaussian function and choosing stimulation sites based on the estimated
decrease in entropy. However, both algorithms require a large number of
MEPs and are developed to search for the target location with a fixed
stimulation orientation (45� from the midsagittal line). The optimal
orientation has been shown to differ between hand muscles (Bashir et al.,
2013) and may also differ by tens of degrees across individuals (Balslev
et al., 2007). Therefore, in addition to the stimulation location, the
stimulation orientation should be optimized in the target search. More-
over, the performance of both of the above-mentioned algorithms was
tested by varying the coil location in a grid with a 7-mm spacing. Such a
grid is relatively sparse, and it might be beneficial to carry out the target
search in a denser grid.

To overcome these limitations, we developed an algorithm we named
BOOST (Bayesian Optimization Of Stimulation Targeting) to automati-
cally find the optimal stimulation parameters, location and orientation,
eliciting the largest MEPs. The automated search with BOOST is an
iterative process, in which the search result, i.e., the estimate of the
optimal target, is updated in each iteration based on the already collected
MEPs. Due to the probabilistic nature of the target search, we approach it
with Bayesian optimization (see, e.g., Shahriari et al., 2016). More spe-
cifically, we apply Gaussian process regression (Rasmussen andWilliams,
2006) to model the MEP responses as a function of the stimulation
location and orientation. An advantage of this model is that we make no
strong assumptions about the shape of the MEP response function. We
present two versions of the BOOST algorithm: (1) in KG-BOOST, the
stimulation is adaptively guided with a knowledge-gradient method
(Frazier et al., 2009; Scott et al., 2011; Frazier and Wang, 2016), which
efficiently optimizes noisy functions (Picheny et al., 2013); (2) in
Grid-BOOST, MEPs are sampled in a predetermined grid without adap-
tive guiding. KG-BOOST is the method that we recommend, whereas
Grid-BOOST was implemented for comparison.

We evaluated the performance of different versions of the BOOST
algorithm in one-dimensional cases with multi-locus TMS (mTMS),
which allows electronic adjustment of the stimulation location and
orientation without moving the transducer (Koponen et al., 2018; Nie-
minen et al., 2019), making closed-loop stimulation fast end effortless.
We hypothesized that, to achieve a given level of performance in the
target search, intelligent sampling with knowledge gradient (KG-BOOST)
requires less samples than systematic stimulation (Grid-BOOST) in an
evenly spaced grid. We also expected KG-BOOST to perform better than
Grid-BOOST when the same number of stimuli are used.

2. Methods

In this section, we describe the BOOST algorithm for an automated
search for the optimal TMS parameters. In addition, we present the
experimental set-up and the measurement protocol used to test the per-
formance of the algorithm.

2.1. Algorithm

First, we present the BOOST algorithm and underlying mathematical
models in a general form that allows the search of TMS targets in a
multidimensional space. Then, we present a one-dimensional version of
2

the algorithm in detail and the model parameters we used to validate it.

2.1.1. Bayesian optimization with Gaussian processes
Our algorithm is designed to find stimulation parameters that pro-

duce the largest motor responses. We model the nth MEP amplitude as

yn ¼ f ðxnÞ þ εn; (1)

where f ðxÞ is an unknown MEP response function that depends on D
variables x ¼ ½x1;…; xD�T. Here, x can include, for example, the esti-
mated location and orientation of the E-field maximum in the cortex. εn
represents additive noise and is assumed to follow the normal distribu-
tion as εn � N ð0; λ2nÞ, with variance λ2n describing the variability of the
MEP responses. Furthermore, εn for different n are assumed to be sta-
tistically independent of each other and, for simplicity, also of xn. The
measured MEP response yn, can be considered to be a random variable,
f ðxnÞ being the mean or expected value of this noisy sample of f at xn.
Mathematically, the problem of finding the maximum of the MEP
response function can be formulated as

xmax ¼ arg max
x

f ðxÞ; (2)

where xmax contains the stimulation parameters that maximize f . We
assume that f ðxÞ is a smooth function that indicates the effect of the E-
field distribution on the neuronal pool responsible for the muscle
contraction. The non-zero part of f informs us about the motor map of the
investigated muscle.

The algorithm is based on modeling f with Gaussian process regres-
sion (Rasmussen and Williams, 2006) given N noisy MEP responses y ¼
½y1;…; yN �T. For stimulation parametersX ¼ ½x1;…; xN �, we assume that
the unknown values of f are jointly Gaussian

f � N ðμ0; KÞ; (3)

where f ¼ ½f ðx1Þ;…; f ðxNÞ�T, μ0 ¼ ½μ0ðx1Þ;…; μ0ðxNÞ�T is a prior mean
vector, and the covariance matrix K contains information on the a priori
correlation of f ðxnÞ and f ðxmÞ. In this context, we use a squared expo-
nential covariance kernel defined as

Kðn;mÞ ¼ kðxn; xmÞ ¼ a0 exp

 
�
XD
d¼1

a1;d
��xn;d � xm;d

��2! (4)

The model parameter a0 determines how much f can vary from the prior
mean μ0, as one can see by setting m ¼ n and observing that kðxn; xnÞ ¼
a0 is the variance of f ðxnÞ. The second set of model parameters a1;d (d ¼ 1;
…; D) determines the smoothness of f , i.e., how quick changes there can
be in each dimension d. The exponential term in Eq. (4) ensures that the
correlation of f ðxnÞ and f ðxmÞ is large when the stimulation parameters xn
and xm (with the elements xn;d and xm;d, respectively) are close to each
other and a1;d are small. On the other hand, as a1;d get large, K tends to a
diagonal matrix, the samples f ðxnÞ becoming mutually less correlated.

With the help of the described model and Bayesian inference, one can
formulate the posterior probability distribution of f ðxÞ at any point x
given the measured N responses in vector y and the corresponding
stimulation parameters X:

f ðxÞ �� y; X e N �μNðxÞ; σ2NðxÞ�: (5)

In this formula, the so-called posterior mean μNðxÞ can be calculated as

μNðxÞ¼ μ0ðxÞ þ kðx;XÞðKþ ΛÞ�1ðy�μ0Þ; (6)

where kðx;XÞ ¼ ½kðx; x1Þ;…; kðx; xNÞ� contains the covariances between
x and x1;…; xN similarly to Eq. (4), and Λ is a diagonal matrix with λ21;…

; λ2N on its diagonal. The location of the posterior mean maximum
μmax
N ¼ maxðμNðxÞÞ provides an estimate of the optimal stimulation
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parameters xmax. One can also estimate the variance of σ2NðxÞ in Eq. (5):

σ2
NðxÞ¼ kðx; xÞ � kðx;XÞðKþ ΛÞ�1kðx;XÞT: (7)

The sampling in the optimization process can be performed system-
atically in a grid of stimulation parameters as we do in the Grid-BOOST
version of the algorithm. Another option is to utilize so-called acquisition
functions that provide suggestions for the next sampling parameters xNþ1

and help finding the optimum with a smaller number of samples than
with the pre-determined grid approach. For this purpose, we apply the
knowledge gradient (KG) that guides KG-BOOST optimization and is
computed as

KGðxNþ1Þ¼E
�
μmax
Nþ1ðxNþ1Þ

�� μmax
N ; (8)

where μmax
Nþ1ðxNþ1Þ represents the maximum of the posterior mean func-

tion if we get one extra sample yNþ1 corresponding to the parameters
xNþ1. In Eq. (8), μmax

Nþ1ðxNþ1Þ is a random variable depending on the
random variable yNþ1 and E stands for the mean operator. KGðxNþ1Þ thus
tells us how much the maximum of the posterior mean is expected to
change if a new sample were collected with parameters xNþ1. The opti-
mally chosen next stimulation parameters lie where KGðxNþ1Þ reaches its
maximum. More details about the knowledge-gradient computation can
be found in the Appendix. Note that there are also other methods to guide
adaptive sampling, but we chose the knowledge-gradient method due to
its reported good performance in optimizing noisy functions (Picheny
et al., 2013).

2.1.2. Algorithm for finding an optimal stimulation target in one dimension
The algorithm presented above works in multiple dimensions; here,

we describe its one-dimensional version to find automatically either the
optimal location of the peak E-field on a line segment or the optimal E-
field orientation. Figure 1A depicts the flowchart of the algorithm.
Fig. 1. Bayesian optimization of stimulation targeting. A: Algorithm flowchart. B: Ex
(black dots). The purple solid line shows the posterior mean curve, and the shade
stimulation target is where this curve reaches its maximum (downward-facing arrow)
prior mean for the next iteration. The next stimulus in KG-BOOST would be given wit
upward-facing arrow). C: Three placements (L1–L3) of the translation transducer o
transducer are visualized in the top-right corner. D: The transducer placements for th
C and D, the dashed lines show the search space and the arrows indicate the location a
placement. In each case, the stimulation of the reference origin is realized with the low
feeding suitable current combinations to both of the overlapping coils.

3

Several choices for the algorithm, such as the method for choosing the
first stimulation parameters, were made intuitively. Most of these choices
are justified by the fact that they resulted in a well-working algorithm.
The automated search begins with determining the stimulation param-
eters for two initial samples within the search space ½ �L=2; L=2� that
covers the selected range of stimulation locations or orientations (Step 1).
The first initial sample is randomly chosen within the first half of the
search space, i.e., x1 2 ½ � L =2; 0�. The second one is taken at location
x2 ¼ x1 þ L=2. Next, a TMS pulse (or two pulses directly after Step 1) is
given according to the determined stimulation parameter (Step 2), and
the resulting MEP is measured from the target muscle (Step 3). For our
analysis, we define the MEP amplitude yn as the base-10 logarithm of the
measured peak-to-peak amplitude (in microvolts), to meet better the
Gaussian assumption of the MEP variability and to suppress large outlier
MEPs, which could otherwise lead to an erroneous final result.

In Step 4, we compute the estimate for the posterior mean with Eq.
(6). Since the MEP variability differs between individuals, we adjust most
of the model parameters adaptively based on the data gathered in the
optimization process. As a prior mean for the first iteration, i.e., after the
two initial samples, we use a constant function, the output value of which
is the average of the two initial responses. After the first iteration, the
prior mean is still constant but now with an output value that is the
average of the current posterior mean curve: μ0ðxÞ ¼ μNðxÞ, where μNðxÞ
denotes the mean of the posterior mean curve (see the black dashed line
in Fig. 1B). In the first iteration, we set the variability parameter as a0 ¼
max
n¼1;2

ðjyn � yj2Þ, where y denotes the mean of the gathered MEPs. If the

two initial responses happen to have the same value, we set a0 ¼
ðlog105Þ2 ¼ 0:49. In the subsequent iterations, we define a0 ¼
maxð

���maxðCI95%;uðxÞÞ � μ0ðxÞj2;
���μ0ðxÞ � minðCI95%;lðxÞÞj2Þ, where

CI95%;uðxÞ ¼ μNðxÞ þ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2NðxÞ

p
and CI95%;lðxÞ ¼ μNðxÞ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffi
σ2NðxÞ

p
are the upper and lower limits of the 95% Bayesian credible interval of
ample of the estimation of the optimal stimulation target after 10 MEP responses
d area depicts its 95% credible interval. The current estimate of the optimal
. The black dashed line, being the mean of the posterior mean curve, depicts the
h the parameter that maximizes the knowledge-gradient curve (gray dotted line;
ver the primary motor cortex for 1D location search. The coil windings of the
e orientation search (O1–O3) and the coil windings of the rotation transducer. In
nd orientation of the E-field maximum in the reference origin for each transducer
er coil (orange or purple), and the stimulation of the other targets is achieved by
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the posterior mean estimate, respectively (see an example of the credible
interval in Fig. 1B). We define the smoothness parameter as a1 ¼ k2π2=
ð2L2Þ, where k tells how many times f is expected to cross its mean value
within the search space (see Rasmussen and Williams, 2006, page 81).
Here, we assume that k ¼ 2. TheMEP variance λ2n is chosen to be constant

everywhere. In the first iteration, λ2n ¼ λ2 ¼ 1=2
P2

n¼1

����yn � yj2, which is

the variance of the elements in y. In the following iterations, λ2n ¼ λ2 ¼
1=N

PN
n¼1

����yn � μNðxnÞj2, i.e., the variance of the differences between the

measured MEPs and the posterior mean curve. In each iteration, the es-
timate of the optimal stimulation target is where the posterior mean
reaches its maximum.

In Step 5, the algorithm checks the stopping criteria. If they are not
met, the next sampling point is determined (Step 6). The KG-BOOST al-
gorithm stops if at least 14 responses have been collected and if, during
the past eight iterations, the estimate of the optimal stimulation target
has changed no more than 2 mm or 12� for the location and orientation
search, respectively, or when 30 responses have been collected. These
stopping criteria were formed based on preliminary convergence evalu-
ations on test data. If the stopping criteria are not met, the next sampling
point is chosen by evaluating the knowledge-gradient function (Eq. (8))
and by finding its maximum. If the knowledge gradient has the same
value for all sampling points, we randomly pick the next stimulation
parameter from 2 to 5 mm or 12–30� distance from the current estimate
of the optimal stimulation target. We repeat Steps 2–6 until the stopping
criteria are met. In Grid-BOOST, we take one sample in each point of an
equally spaced grid in random order with no adaptive stopping criteria,
sampling until the whole search space is covered systematically.
2.2. Data acquisition

Five healthy subjects volunteered for the study (aged 26–35 years,
two males). All subjects were right-handed according to the Edinburgh
inventory (Oldfield, 1971). Prior to the measurements, each subject
signed an informed consent. The study was approved by the Coordinating
Ethics Committee of the Helsinki University Hospital and was carried out
in accordance with the Declaration of Helsinki.

TMS was administered with two different transducers connected to
our in-house-developed mTMS system (Koponen et al., 2018). One of the
transducers comprises a figure-of-eight coil and an overlapping oval coil
(Fig. 1C; Koponen et al., 2018). With this translation transducer, we
could electronically shift the location of the calculated E-field maximum
along a 30-mm-long line segment in the cortex. The E-field in the cortex
was calculated using a spherical head model with an 85-mm radius, the
cortex assumed to be at 15-mm depth from the head surface. We had 31
possible locations (symmetrically around the reference origin with 1-mm
spacing) of the E-field maximum along this line segment. The other
transducer, with two overlapping figure-of-eight coils (Fig. 1D), allows
electronic adjustment of the orientation of the maximum E-field (de
Oliveira e Souza, 2018). We restricted the possible stimulation orienta-
tions in the spherical head model to be within a 180� interval centered
around the reference origin, with neighboring orientations separated by
1�. Here, the reference origin (0 mm/0�) means the location or orienta-
tion of the maximum E-field resulting from the stimulation with only the
lower of the two overlapping coils (Figs. 1C and D). Thus, the reference
origin moves together with the transducer. The applied pulse waveforms
were monophasic (60-μs rise time, 30-μs hold period; Koponen et al.,
2018b) and the interstimulus interval (ISI) was randomized between 4
and 6 s.

The position of the mTMS transducers and the head of the subject
were tracked with a neuronavigation system (eXimia 3.2, Nexstim Plc,
Finland). For image-based guiding, we had T1-weighted magnetic reso-
nance images of each subject. When needed, the position of the trans-
ducer with respect to the subject’s head was kept fixed with the help of
4

the neuronavigation system, which allowed stimulation only when the
transducer location was within 2 mm and all rotation angles less than 2�

from their target values.
The motor responses were measured with surface EMG integrated in

the eXimia 3.2 system (500-Hz low-pass filtering, 3-kHz sampling fre-
quency). The silver/silver-chloride surface electrodes (Ambu Neuroline
720, Ambu A/S, Denmark) were in a bipolar arrangement with the active
electrode placed over the muscle belly of the right first dorsal interosseus
(FDI) and the reference electrode on the second proximal phalange. The
ground electrode was placed on the back of the hand. The eXimia system
analyzed the evoked responses and displayed the peak-to-peak ampli-
tudes and latencies of the MEPs in real time. To get the MEP data into our
algorithms programmed with Matlab (The MathWorks, Inc., USA), we
imported the video stream of the eXimia system to our control computer
in real time with a USB video grabber (DVI2USB 3.0, Epiphan Systems
Inc., Canada). From the video stream, we extracted the MEP-amplitude
and MEP-latency values as reported by the eXimia system. We also
analyzed the baseline EMG signal 5–200 ms before the TMS pulse for
real-time rejection of responses with muscle preactivation. We accepted
an MEP if its onset latency was 15–30 ms and if the baseline EMG signal
was within �10 μV (when determining the MT) or �15 μV (when
running the KG-BOOST or Grid-BOOST algorithms). If these conditions
were not met, we repeated the stimulation with the same parameters
until the MEP response was acceptable. Since the automatic MEP
analyzer of the eXimia system sometimes missed small responses, giving
just 0 μV as their amplitude, we replaced for data analysis each 0-μVMEP
amplitude with a random amplitude drawn from a uniform distribution
with an interval of 5–15 μV.

Each subject had two measurement sessions, conducted on different
days. At the beginning of the first session, we manually located the
optimal stimulation target of the FDI muscle with the figure-of-eight coil
of the translation transducer. For this, we delivered TMS pulses to the left
primary motor cortex, varying the target location with millimeter-level
steps around the hand-knob area. The stimulation intensity was first
about 70 V/m, then adjusted so that the maximal MEP amplitude would
be approximately 1 mV. The ISI was about 5 s. After delivering several
tens of pulses around the hand-knob region to outline the MEP-positive
area, we visually evaluated the distribution of the MEP responses and
selected one target approximately from the center of the area showing
the largest MEPs. During the manual search, the estimated orientation of
the peak E-field was kept perpendicular to the overall orientation of the
precentral gyrus. Next, we determined the resting MT (rMT) for the FDI
muscle with a maximum-likelihood method (Awiszus, 2003), applying
20 pulses with different intensities while having 50 μV as a threshold for
MEP acceptance. For the rest of the two sessions, the stimulation in-
tensity was set to 110% rMT.

In the first session, we performed the automated search for the
optimal stimulation location with the KG-BOOST and Grid-BOOST al-
gorithms described in Section 2.1.2. We positioned the transducer in
three different locations to test whether the algorithm can locate the
optimal stimulation site regardless of its placement within the search
space. The first placement corresponded to the manually found FDI target
(placement L1), the second was ~5mm to the medial (placement L2) and
the third ~8 mm to the lateral direction (placement L3) from L1 (see
Fig. 1C). The transducer was kept fixed at L1–L3 and the peak E-field was
electronically adjusted to one of the 31 possible locations according to
the algorithm. We repeated both KG-BOOST and Grid-BOOST seven
times for each transducer placement (L1–L3), resulting in 21 repetitions
per subject. The transducer placements and the utilized version of the
algorithm were applied in a pseudorandom order. The experimenters
were aware of the transducer placement as well as the applied algorithm
version during the experiments. With both KG-BOOST and Grid-BOOST,
the estimated posterior mean curve computed with Gaussian process
regression (Eq. (6)) was calculated on the 30-mm line segment with a
grid spacing of 0.25 mm.

In the second session, we conducted the automated search for the
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optimal stimulation orientation. We set three transducer placements as
follows: the placement O1 corresponded to L1, the placement O2 was
oriented ~30� counterclockwise, and the placement O3 ~45� clockwise
with respect to O1 (see Fig. 1D). The sampling in Grid-BOOST consisted
of 31 pulses with 6� steps ranging from�90� to 90� around the reference
origin. In KG-BOOST, we had the same 180�-wide search space with the
possible stimulation orientations separated by 1� steps. We repeated both
KG-BOOST and Grid-BOOST seven times with transducer placements
O1–O3, resulting in 21 repetitions for each subject. The posterior mean
curve was computed with a grid spacing of 0.5�.

2.3. Data analysis

In this Section, we first explain how we simulated other search
methods using the measured data. Then, we show how we evaluated the
accuracy of different search methods by comparing the optimization
results with the ground truth and howwe determined the precision as the
deviation in the search outcomes. In addition, we present details of the
statistical testing comparing the performance of KG-BOOST with the
other methods. The investigators were not blinded when analyzing the
data.

2.3.1. Other search methods
To complement the results obtained directly from our experiments,

we simulated the performance of three other sampling methods using the
MEPs collected in the KG-BOOST and Grid-BOOST searches, sampling
from these data without replacement.

First, we conducted sparser grid sampling (sparse Grid-BOOST) with
the data collected in the original Grid-BOOST searches (that we call
dense Grid-BOOST from now on). In sparse Grid-BOOST, the number of
samples collected was equal to that of the corresponding KG-BOOST
search repetition (14–30 samples per search). We selected every other
sample from the denser grid and sampled from this subset of the data in
random order until the total number of samples was the same as in the
KG-BOOST search. If needed, we took extra samples from the unused half
of the data. Since the two data subsets could be constructed in two ways,
with the first one including either even or odd indices, we randomized
the order in which the two subsets were used. The posterior mean curve
corresponding to the sparse Grid-BOOST sampling was computed in the
same way as with KG-BOOST and dense Grid-BOOST, i.e., with the pa-
rameters presented in Section 2.1.2.

To mimic the target search without any modeling of the MEP re-
sponses, we also evaluated a search strategy in which the estimate of the
optimal stimulation target coincided with the location of the maximum
MEP response. For this, we used the data sampled in the sparse Grid-
BOOST searches. We refer to this search strategy as the maximum-MEP
method.

For comparison, we simulated the previously reported AutoHS
method by Harquel et al. (2017) to find the optimal stimulation site. We
made three adjustments to the AutoHS method due to differences in the
MEP-sampling schemes: (1) Our sampling grid spacing was 1-mm
(cortical grid) as opposed to 7 mm (grid of coil locations on the scalp)
used in the original study. (2) Our search space was one-dimensional
instead of two-dimensional. (3) We allowed sampling at each stimula-
tion site at most once, whereas in Harquel et al. (2017) the same location
was targeted at most twice. Because AutoHS gathers five MEPs at each
iteration at the selected stimulation target and because for some targets
we had collected only seven MEPs, we ran the method only once for each
subject and transducer placement. When searching for the optimal
stimulation location with AutoHS, the possible values for the maximum
MEP amplitude, the Gaussian width, and the center point of the Gaussian
were {100 μV, 300 μV, …, 3900 μV}, {2 mm, 4 mm, …, 20 mm}, and
{�15 mm, �14.75 mm, …, 15 mm}, respectively. For defining the next
stimulation target in each iteration, the grid spacing was 1 mm. The first
stimulation target and the center point of the prior distribution were
always set in the middle of the search space (the reference origin).
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We also performed the search for the optimal stimulation orientation
with AutoHS although such an application was not described in the
original article. Indeed, the shape of the Gaussian function could be ex-
pected to model the MEP distribution as a function of the stimulation
orientation, too. Here, the possible values for the maximum MEP
amplitude, the Gaussian width, and the center point of the Gaussian were
{100 μV, 300 μV,…, 3900 μV}, {12�, 24�,…, 120�}, and {�90�, �89.5�,
…, 90�}, respectively. The spacing of the sampling grid was 6�. The prior
for the optimal angle was centered around the reference origin as in the
location search. The width of the prior distribution was 30�.

2.3.2. Estimation of accuracy and precision
To estimate the bias in the results (i.e., the accuracy) obtained with

different search strategies, we first defined the best estimate for the
optimal stimulation target (hereafter, the ground truth) for each trans-
ducer placement and subject. This was done by first pooling the data from
the seven repetitions of the KG-BOOST and Grid-BOOST searches. Each
data pool included at least 315 MEP responses from the same spatial/
angular distribution. For each of the 30 cases (5 subjects� 2 trans-
ducers� 3 transducer placements), we computed a median curve in a grid
with a 1-mm/1� spacing using a sliding window that took into account
the responses that were closer than 5 mm (location search) or 30�

(orientation search) from the computation point. We defined the ground
truth as the location of the maximum of the median curve. If several
points of this curve had the same maximum value, we defined the ground
truth as their mean location. When calculating the ground truth, we
replaced the amplitudes of those MEPs that the eXimia system had
originally identified as 0-μVMEPs with the peak-to-peak amplitude of the
EMG signal in the time interval of 15–45 ms after the TMS pulse.

We computed the average location/orientation of the search results
over the seven repetitions, separately for each search strategy (KG-
BOOST, dense and sparse Grid-BOOST, the maximum-MEP method), and
compared it with the corresponding ground truth. To determine the
group-level accuracy, we computed the mean of these differences in 15
cases (3 transducer placements� 5 subjects). This accuracy measure tells
us how close the average result was to the ground truth. With AutoHS, we
had in each case only one simulated search result and used its difference
from the ground truth when computing the mean accuracy.

To assess the precision (degree of scatter) of each search method, we
computed the standard deviation of the corresponding seven final search
results and averaged these standard deviations over the transducer
placements and subjects. This precision measure describes the repeat-
ability of the outcome of each search method.

2.3.3. Statistical analysis
The difference between the precision/accuracy of KG-BOOST and the

other search methods with the same number of search repetitions (i.e.,
dense and sparse Grid-BOOST, the maximum-MEPmethod) was tested by
permutation statistics as follows. Altogether, 30 test values (5 subjects �
3 transducer placements � 2 search methods under comparison) were
randomly divided into two groups 1,000,000 times. The accuracy and
precision for both the location and the orientation search were treated
separately. For each permutation, we computed the mean value for both
groups. We obtained a two-tailed p-value as the proportion of permuta-
tions for which the absolute value of the difference of means of the
permuted groups exceeded the absolute value of the corresponding
original difference of means between the sampling methods. The level of
statistical significance was set at 0.01. After Bonferroni correction for
multiple comparisons (12 comparisons), the corrected significance level
was 0.00083.

3. Results

Results of the location and orientation searches are visualized in
Fig. 2. Figure 2A shows how the search results for a representative subject
with the three different transducer placements L1–L3 are distributed



Fig. 2. Results of the location and orientation searches. A: Location search with Subject 3 and transducer placements L1–L3. B: Orientation search with Subject 1 and
transducer placements O1–O3. The transducer placements with respect to the hand-knob area in the pre-central gyrus are shown in the boxes on the top (the arrows
indicate the location/orientation of the manually found target), with the corresponding results panels below them. The black dots show the MEP responses measured
during all KG-BOOST and dense Grid-BOOST searches. The black line shows the moving median of these responses, and the location of its maximum (black dashed
arrow) is the ground truth. The asterisks show the estimates of the optimal stimulation locations/orientations of the seven repetitions with KG-BOOST (orange/
purple), dense (gray) and sparse (light gray) Grid-BOOST and the maximum-MEP method (dark gray), respectively. The three smaller graphs on the right visualize
single runs of different search methods with L3/O3. In these graphs, the black dots illustrate the MEP responses, the solid lines depict the posterior mean curves, and
the circles indicate the estimated optimal stimulation locations/orientations (the corresponding asterisks in the L3/O3 results panel are circled). C–D: Violin plots
visualizing the error (difference from the ground truth) in the search of the optimal location (C) and orientation (D) for each subject, with the data of all transducer
placements combined. The asterisks show the error of each search run, and the black lines indicate the mean errors.
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with respect to the ground truth. The three smaller graphs on the right
side of Fig. 2A depict an example of a single run with each of the four
search methods (KG-BOOST, dense and sparse Grid-BOOST, the
maximum-MEP method). Figure 2B shows similar example results for the
orientation search. Figures 2C and D illustrate the error distributions of
6

the search outcomes, i.e., how far the optimized parameters are from the
ground truth, for each subject.

The convergence of the adaptively guided KG-BOOST in the search
for the optimal location and orientation is presented in Figs. 3A and B,
respectively. Figure 3C depicts the performance metrics of the location



Fig. 3. The convergence of KG-BOOST and
the performance of the different search
methods. A–B: The convergence of KG-
BOOST in the search for the optimal stimu-
lation location (A) and orientation (B). The
light curves show how far from the ground
truth the single runs are as a function of the
number of samples. The solid dark curve de-
picts the average error from the ground truth
until the minimum number of samples (14,
black vertical line) has been reached. After
14 samples, as many of the runs have already
finished, the average error curve (dashed
line) includes only the remaining runs (until
three or more left). C–D: Accuracy and pre-
cision of the different search methods in the
search for the optimal stimulation location
(C) and orientation (D). The bars depict the
mean accuracy/precision of the search results
with the black whiskers showing the mini-
mum and maximum accuracy/precision over
subjects and transducer placements. In D, the
asterisks indicate the statistically significant
differences in the precision of sparse Grid-
BOOST and the maximum-MEP method
compared to the precision of KG-BOOST.
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search over subjects. The mean accuracy (i.e., how far the average search
result is from the ground truth) of KG-BOOST was 1.4 mm (range:
0.04–5.1 mm) which is similar to the mean accuracy of 1.5 mm (range:
0.2–5.0 mm) of dense Grid-BOOST (p ¼ 0.87). The accuracies of sparse
Grid-BOOST (mean: 2.0 mm; range: 0.04–4.4 mm) and the maximum-
MEP method (mean: 2.1 mm; range: 0.3–5.3 mm) were slightly worse,
although the differences were not statistically significant when compared
to the accuracy of KG-BOOST (p ¼ 0.32 for the sparse Grid-BOOST and p
¼ 0.21 for the maximum-MEP method). The precision, expressing how
repeatable the results are, was best with dense Grid-BOOST (mean: 2.7
mm; range: 1.2–5.2 mm). The mean precision of KG-BOOST (mean: 3.2
mm; range: 1.6–5.3 mm), the maximum-MEP method (mean: 3.4 mm;
range: 1.9–6.6 mm) and sparse Grid-BOOST (mean: 3.4 mm; range:
1.7–6.2 mm) were comparable to each other. When comparing KG-
BOOST with dense or sparse Grid-BOOST or the maximum-MEP
method, the p-values were 0.23, 0.68, and 0.72, respectively. With KG-
BOOST, sparse Grid-BOOST and the maximum-MEP method, the
average number of samples collected was 18 (range: 14–30), which
means that on average the search took 1.5 min. With dense Grid-BOOST,
we always gathered 31 samples per search, corresponding to an average
time of 2.6 min. Moreover, the manually found optimal stimulation
location, which corresponds to the reference origin with the transducer
position L1, varied on average 3.5 mm (range: 0–6 mm) from the cor-
responding ground truth. The average number of stimuli in the manual
search was 59 (range: 37–78), administered on average in 11 min (range:
4–18 min).

The performance metrics of the orientation search can be found in
Fig. 3D. The mean accuracy of KG-BOOST (mean: 5.4�; range: 1.4–13.6�)
was close to the ones of dense Grid-BOOST (mean: 5.1�; range: 0.6–10.3�;
p ¼ 0.82), sparse Grid-BOOST (mean: 5.8�; range: 0.9–18.8�; p ¼ 0.78)
and the maximum-MEP method (mean: 7.5�; range: 0–17.1�; p ¼ 0.21).
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The mean precisions of KG-BOOST (mean: 9.7�; range: 5.5–15.4�), dense
Grid-BOOST (mean: 11.3�; range: 4.2–19.8�), sparse Grid-BOOST (mean:
19.1�; range: 8.3–48.8�) and the maximum-MEP method (mean: 20.2�;
range: 10.4–32.9�) varied from each other. We found statistically sig-
nificant differences in precision between KG-BOOST and both sparse
Grid-BOOST (p ¼ 0.000031) and the maximum-MEP method (p ¼
0.000001). The difference in precision between KG-BOOST and dense
Grid-BOOST was not statistically significant (p ¼ 0.25). The average
number of samples acquired in the orientation search was 16 (range:
14–30; average time: 1.3 min) for KG-BOOST, sparse Grid-BOOST, and
the maximum-MEP method. With dense Grid-BOOST, the number of
samples was always 31 (average time: 2.6 min). In addition, the reference
origin of the transducer placement O1, which was set to be perpendicular
to the global orientation of the precentral gyrus, varied on average 6.7�

(range: 1–13�) from the ground truth.
Our version of the AutoHS algorithm yielded an average error of 1.5

mm (range: 0.04–4.6 mm) and 19.7� (range: 2.1–37.9�) with respect to
the ground truth for the location and orientation search, respectively.
These values are not directly comparable with the accuracy values pre-
sented in Figs. 3C and D, since only one iterative search could be simu-
lated for each subject and coil placement with the data available.
Therefore, the results of AutoHS are excluded from Figs. 2 and 3 and the
statistical analysis. With the AutoHS algorithm, the number of responses
required for convergence was on average 53 (range: 20–110) and 62
(range: 20–163) for the location and orientation search, respectively,
being about three to four times the number of stimuli used by KG-BOOST.

4. Discussion

We demonstrated that multi-locus TMS and Bayesian optimization
can be successfully combined into an automated search of TMS targets. In
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this context, mTMS enables adjusting the stimulation location and
orientation in a closed-loop setting without the need to move a coil,
which significantly reduces the laboriousness of TMS. Bayesian optimi-
zation provides means to model and guide the stimulation in an effective
and user-independent manner.

4.1. Performance of the automated target search

The automated online searches and further offline comparisons
revealed that the mean accuracy in the location search was almost the
same with all three versions of the BOOST algorithm (KG-BOOST guided
with knowledge gradient and Grid-BOOST with dense and sparse sam-
pling grids), when choosing the optimal target based on the maximal
MEP response only, and with the AutoHS method (Harquel et al., 2017)
(accuracies in the range of 1.4–2.1 mm). In the orientation search, the
accuracy of the AutoHS method (19.7�) was worse than that of the other
methods (5.1–7.5�). The small accuracy values indicate that the search
results were centered almost symmetrically around the ground truth,
which is expected behavior for any sensible search method.

The average precision of the location search was similar (2.7–3.4mm)
among the four search strategies for which we were able to compute the
precision (for AutoHS, we did not have enough samples for retrieving
several independent search results). Thus, there were no statistically
significant differences in precision in the location search between KG-
BOOST and the other search methods. This can be explained by the
fact that the motor maps extended over a large portion of the 30-mm-long
search space and the median curves were relatively flat around their
maximum (Fig. 2A). Instead, we found differences in the average preci-
sion of the optimal orientation search. KG-BOOST and dense Grid-BOOST
had similar precisions (9.7� and 11.3�, respectively), while the precision
of sparse Grid-BOOST and the maximum-MEP method were significantly
worse (19.1� and 20.2�, respectively). These differences in the degree of
scatter are not surprising, since the MEP-positive part of the median
curve in the search space appeared narrower in the orientation search
compared to the corresponding part in the location search. In the
orientation search, KG-BOOST and dense Grid-BOOST got enough sam-
ples from the maximum area and the slopes of the mean MEP curve
whereas sparse Grid-BOOST and the maximum-MEP method got fewer
responses around the maximum, leading to larger deviation and, thus,
worse precision in the search results.

Considering the efficiency of different search strategies, dense Grid-
BOOST always used 31 samples, and AutoHS needed on average 53
and 62 samples, whereas the other methods used 18 and 16 samples on
average in the location and orientation search, respectively. Sampling
with KG-BOOST resulted in accuracy and precision similar to those of
dense Grid-BOOST, but with approximately half of the number of sam-
ples. Also, the accuracies were similar (location search) or worse
(orientation search) with AutoHS than with KG-BOOST, and AutoHS
needed on average three to four times more samples for convergence.
These findings indicate that KG-BOOST was more efficient than AutoHS
and dense Grid-BOOST, and that sampling in a dense evenly spaced grid
wastes samples especially in areas that produce no MEP responses. Re-
sults of the orientation search show that adaptive sampling with KG-
BOOST led to better precision than placing the same number of sam-
ples evenly in the search space. Based on these results, we suggest using
intelligent sampling, such as sampling with knowledge gradient (Frazier
et al., 2009) that we used in KG-BOOST. This would allow one to avoid
gathering too much data in areas with no MEPs while sampling adap-
tively around the maximum of the MEP curve to efficiently get enough
information about the optimal target. We anticipate that even larger
differences between the sampling methods are expected with larger or
higher-dimensional search spaces (such as a two-dimensional location
grid with additional variation in orientation), when non-guided grid
sampling becomes very time-consuming.

Although the accuracy and precision values are generally good for
almost all the search strategies, a single search outcome may still be
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several millimeters or degrees off from the ground truth regardless of the
search method (see examples in Fig. 2). This is mainly due to the un-
avoidable high variability of the MEP responses that is present also in
manual searches. Setting more strict stopping criteria would likely in-
crease the accuracy and precision of KG-BOOST with the trade-off of
increasing the number of samples needed and, thus, the measurement
time. The stopping criteria can be chosen based on the needed accuracy
and precision, which may differ between applications of the method.
4.2. Gaussian processes in target optimization

This study also demonstrated that Gaussian process regression is
suitable for modeling the MEP response function (i.e., motor map).
Gaussian processes allow taking into account the uncertainties of the
problem, the biggest source of uncertainty being the MEP variability.
Another advantage of Gaussian process regression is its suitability for
modeling a response function of any smooth shape as opposed to, e.g.,
parametric Gaussian curve fitting, which assumes that the underlying
function is a symmetric Gaussian distribution as in Harquel et al. (2017).
We consider nonparametric fitting of MEP curves advantageous, since the
motor maps can be asymmetric (see example maps in Weiss et al., 2013,
Julkunen, 2014, and van de Ruit et al., 2015). Sampling in a dense grid,
as we did, is beneficial, since it assists in revealing the shape and, thus,
the location of the peak of the response curve better than sampling in a
coarse grid. Furthermore, as the Gaussian process regression model links
the data of neighboring points, the expected convergence speed of a
sampling in a dense grid is similar to that of a sampling in a sparse grid.

Whenmodeling with Gaussian processes, one needs to ensure that the
responses are handled on a suitable scale. We chose a logarithmic scale to
satisfy better the assumption of location/orientation-independent MEP
variance included in the model. The BOOST algorithm seems to tolerate
well the variability in the MEP variance that occurs in practice. Note that
on a logarithmic scale, the peaks of the MEP response curves (Fig. 2)
appear broader than on a linear scale. For ensuring a sufficient number of
samples and for placing them optimally, we suggest adaptively guiding
the sampling with, e.g., knowledge gradient (as in KG-BOOST) or
entropy-based methods (as implemented by Harquel et al. (2017)). There
are also other methods that could suit for efficient guiding of the sam-
pling, such as the expected-improvement method (Mockus et al., 1978)
or the use of confidence bounds as sampling criteria (Cox and John,
1992), but these were not tested in this study.

Even though Gaussian process regression is a nonparametric method,
it includes several model parameters that need to be tuned case-
specifically. Our suggestion for determining the parameters in the case
of TMS-target optimization are presented in Section 2.1.2, but there are
also other ways to determine these parameters. To adapt the posterior
adequately to the data while avoiding overfitting, it was crucial to
correctly tune the smoothness parameter a1;d (see Eq. (4)) to be of a
reasonable magnitude. We chose to set this parameter with the simple
zero-crossings formula and to keep it constant during the whole opti-
mization procedure. Another option would be to tune a1;d among the
other model parameters adaptively and to teach the model with the ac-
quired data. For this purpose, we also tested maximum-likelihood esti-
mation and cross-validation (see Chapter 5 of Rasmussen and Williams,
2005). However, in our experience, these approaches tended to over-
estimate a1;d, leading to overfitting the model to the data.
4.3. Future development and applications

Automated stimulation targeting could be further extended to adap-
tively adjust also the stimulation intensity (here, we used a predefined
intensity, 110% rMT). In this case, the motor responses gathered during
the target optimization might also be used in the rMT estimation, or the
rMT could be determined separately after the target optimization with,
e.g., the adaptive algorithm presented by Awiszus (2003). In the future,
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the KG-BOOST algorithm can be applied for multi-dimensional problems,
e.g., to optimize simultaneously the location and orientation of the
E-field, for example, with a 5-coil mTMS system similar to the one
depicted by Koponen et al. (2018). In principle, KG-BOOST can be
implemented with any TMS system that allows automatic adjustment of
the stimulation location and orientation, e.g., with a robotically
controlled stimulator. Furthermore, with a suitable software imple-
mentation, the algorithm could even guide the manual target search
performed with a conventional navigated TMS system. With a
multi-dimensional search space and a larger coverage of the cortex, one
will be able to avoid the initial manual search, which we needed to place
the transducer appropriately, and identify the optimal target even if it
were situated abnormally.

The benefits of automated target optimization are applicable in
several settings, from basic research to therapeutic uses of TMS. The
automated target optimization could be used, e.g., for studying the
plasticity of motor cortex in a user-independent way. After modifying the
function that guides the sampling, the BOOST algorithm may find ap-
plications in efficient and automated mapping of motor areas. If the
actual cortical activation sites are of interest, one may combine the
BOOST algorithm with individualized E-field modeling. In addition to
finding the optimal stimulation parameters based on MEP amplitudes,
the BOOST algorithm could be used to find an optimal stimulation target
with respect to other available measures. For example, TMS targeting
outside the motor cortex could be automatically optimized with respect
to evoked cortical activity measured by electroencephalography (Trem-
blay et al., 2019).

5. Conclusion

We demonstrated that electronically adjusted multi-locus TMS and
Bayesian optimization provide a valid basis for automated search of TMS
targets. The presented adaptively guided target search (KG-BOOST) gave
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results with good accuracy and precision, needing only a relatively small
number of stimuli for convergence. We conclude that KG-BOOST enables
fast, easy and user-independent target optimization, and that its benefits
are applicable from basic research to therapeutic uses of TMS.
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Appendix

Here, we present further details for computing the knowledge gradient. Assume that we haveN noisy samples y ¼ ½y1;…; yN �T that correspond to the
sampling parameters X ¼ ½x1;…; xN �. Knowing them, we choose the next sampling parameters xNþ1 with a knowledge-gradient sampling policy
(Frazier et al., 2009, Frazier and Wang, 2015). For getting the maximum of KGðxÞ (approximately), we choose an appropriately dense subset X* ¼
fx*m;m¼ 1;…; Mg in the search space. For a fixed x*m, we form sequences AðrÞ and BðrÞ, r ¼ 1; …; M, by setting for each x*r 2 X*, AðrÞ ¼ μNðx*r Þ as in
Eq. (6) and

BðrÞ ¼ k
�
x*r ; x

*
m

�� k
�
x*r ;X

�ðKþ ΛÞ�1k
�
x*m;X

�Th
k
�
x*m; x*m

�� k
�
x*m;X

�ðKþ ΛÞ�1k
�
x*m;X

�T þ λ2*

i½ ;

where kðx*r ;XÞ ¼ ½kðx*r ; x1Þ;…; kðx*r ; xNÞ� and kðx*m;XÞ ¼ ½kðx*m; x1Þ;…; kðx*m; xNÞ� contain the covariances between x*r or x
*
m and x1;…; xN (formula for k

in Eq. (4)), Λ is a diagonal matrix with λ21;…; λ2N on its diagonal, and λ2* is the noise variance at location x*m. As in Frazier et al. (2009), we choose
subsequences αðsÞ and βðsÞ of AðrÞ and BðrÞ and an additional sequence γðsÞ, s ¼ 1; …; S, by Matlab codes AffinebreakpointsPrep.m and Affine-
breakpoints.m given in Frazier (2010). With these sequences, we get the knowledge-gradient function as

KG
�
x*m
�¼ XS�1

s¼1

½ðβðsþ 1Þ� βðsÞÞðϕðγðsÞÞ� jγðsÞjΦð � jγðsÞjÞÞ� þmaxðαðsÞÞ � μmax
N ;

where ϕðtÞ ¼ ð2πÞ�½expð�t2 =2Þ and ΦðtÞ ¼
Z t

�∞
ϕðuÞdu are the probability density function and the cumulative density function of a normalized

Gaussian random variable, respectively. Finally, we get the next sampling point as

xNþ1 ¼ arg max
x*m

KG
�
x*m
�
:
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