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Abstract
The capacity of visual attention determines how many visual objects may be perceived at any moment. This capacity can
be investigated with multiple object tracking (MOT) tasks, which have shown that it varies greatly between individuals. The
neuronal mechanisms underlying capacity limits have remained poorly understood. Phase synchronization of cortical
oscillations coordinates neuronal communication within the fronto-parietal attention network and between the visual
regions during endogenous visual attention. We tested a hypothesis that attentional capacity is predicted by the strength of
pretarget synchronization within attention-related cortical regions. We recorded cortical activity with magneto- and
electroencephalography (M/EEG) while measuring attentional capacity with MOT tasks and identified large-scale
synchronized networks from source-reconstructed M/EEG data. Individual attentional capacity was correlated with
load-dependent strengthening of theta (3–8 Hz), alpha (8–10 Hz), and gamma-band (30–120 Hz) synchronization that
connected the visual cortex with posterior parietal and prefrontal cortices. Individual memory capacity was also preceded
by crossfrequency phase–phase and phase–amplitude coupling of alpha oscillation phase with beta and gamma
oscillations. Our results show that good attentional capacity is preceded by efficient dynamic functional coupling and
decoupling within brain regions and across frequencies, which may enable efficient communication and routing of
information between sensory and attentional systems.
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Introduction
Studies using multiple-object tracking (MOT) tasks, where sub-
jects attend and track one or more visual objects, have shown
that humans have the capacity to concurrently attend to 2–4
moving visual objects (Pylyshyn and Storm 1988; Cowan 2001;
Oksama and Hyona 2004; Treisman 2006; Bettencourt et al.
2011). The tracking of multiple objects among distractors is
dependent on the selection of which items will be tracked
(Lahnakoski et al. 2017) as well as on the sustained attention to

the selected target objects (Alvarez and Cavanagh 2005). Inter-
estingly, a similar capacity limit of 2–4 objects has also been
observed for both visual working memory (VWM) (Luck and
Vogel 1997; Cowan et al. 2005) and attention (Pylyshyn and
Storm 1988; Treisman 2006; Bettencourt et al. 2011), so that
VWM and attentional capacities are correlated in individual
subjects (Oksama and Hyona 2004). These findings suggest that
capacity limits of VWM and attention may stem from shared
underlying neuronal mechanisms. Accordingly, the activation of
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prefrontal (PFC), posterior-parietal (PPC), and visual cortices in
functional magnetic resonance imaging (fMRI) data is charac-
teristic to not only VWM tasks but also to MOT (Culham et al.
1998; Battelli et al. 2001; Jovicich et al. 2001; Howe et al. 2009;
Alnaes et al. 2015), spatial attention (for reviews, see Kastner
and Ungerleider 2000; Corbetta and Shulman 2002) and feature-
based attention (Zhou and Desimone 2011), so that the connec-
tivity within fronto-parietal attention networks mediate top–
down attentional effects (Daitch et al. 2013; Spadone et al. 2015;
Meehan et al. 2017). In the fronto-parietal system, PPC is one of
the key regions where VWM capacity limits may arise (Todd and
Marois 2004; Xu and Chun 2006; Robitaille et al. 2010).

Such anatomically distributed processing is thought to be
coordinated and integrated by large-scale interareal neuronal
synchronization (Siegel et al. 2012; Fries 2015; Womelsdorf and
Everling 2015). Large-scale neuronal synchronization and phase
coupling of neuronal oscillations in source-reconstructed mag-
netoencephalography (MEG) studies have indeed been shown
to underlie coordination of visuospatial attention (Siegel et al.
2008; Doesburg et al. 2016; Lobier et al. 2017) and VWM (Palva
et al. 2010). However, both the functional significance of large-
scale neuronal synchronization in MOT tasks and, in particular,
its possible role in individual attentional capacity has remained
poorly understood.

We have previously shown using source-reconstructed MEG
that the amplitude of gamma (γ , 30–120 Hz) oscillations is load-
dependently increased in PFC, PPC, and visual areas in both
MOT (Rouhinen et al. 2013) and VWM (Palva and Palva 2011)
tasks and that this increase is correlated with individual VWM
capacity. Furthermore, in these data, the individual capacity lim-
itations of VWM were also predicted by concurrent large-scale
high-alpha- (hα, 10–14 Hz,) and beta- (β, 14–30 Hz) band phase
synchronization (Palva et al. 2010) as well as by crossfrequency
phase synchronization (CFS) of these networks (Siebenhühner
et al. 2016). In the present study, we address whether large-scale
synchronization could play a role in the integration and coordi-
nation of neuronal processing underlying attention divided to
multiple concurrently tracked visual objects and contribute to
setting the individual attentional capacity limits.

We posited that the capacity of visual attention in MOT tasks
would be associated with long-range synchronization of visual
and frontoparietal attention networks (FPN) as well as by their
crossfrequency (CF) interactions. To test this in a data-driven
approach, we recorded concurrent M/EEG during a MOT task
(Fig. 1a) and used the source-modeled data to identify large-
scale synchronized networks and their correlation with psy-
chophysical performance and individual attentional capacity.

Methods
The experiment used in this study is the same as described in
(Rouhinen et al. 2013). MEG data were collected from 23 addi-
tional subjects. All data, if not stated otherwise, have been ana-
lyzed with a LabVIEW software (National Instruments) with cus-
tomized code. This code is available upon request. An overview
of the workflow is given Supplementary Figure 1.

Subjects and Recordings

A total of 42 healthy volunteers were recorded with concurrent
MEG (306 channels), electroencephalography (EEG) (60 channels),
electro-oculography (EOG) (horizontal and vertical channels),
and electromyography (abductor/flexor pollicis brevis, or thumb

channels) by Vectorview (19 subjects, sampling rate 600 Hz)
and Triux (23 subjects, sampling rate 1000 Hz) M/EEG systems
(Elekta-Neuromag) at the BioMag Laboratory, Helsinki Univer-
sity Hospital. Individual T1-weighted MRI images were recorded
with a 1.5 T scanner (Siemens, Germany) using a MP-RAGE
protocol at a resolution of 1 × 1 × 1 mm resolution. After remov-
ing one subject whose performance was very poor, 41 subjects
remained (22 females, 29 ± 6.5 years). The study was approved
by the Ethical Committee of the University of Helsinki and
performed according to the Declaration of Helsinki. Written
informed consent was received from each subject prior to the
experiment.

Tasks and Stimuli

The subjects performed a MOT task in which they attended and
tracked moving visual objects and responded to feature-changes
in their shape. We used LabVIEW to generate the stimuli and
tasks. We recorded two variations of the task. The first task (T1)
was a general attention task, where subjects tracked all objects
on the screen with the object load varying from one to four. The
second task (T2) was an object-selective attention task, where
the object load remained at four but subjects attended and
tracked only one to four objects with one color while ignoring the
objects with another color (pink and yellow, respectively, Fig. 1a).
The interstimulus interval between target events was 0.7–5 s.
The target event was a shape change of the target object and
had a duration of 100 ms. Each of the four load conditions had
160 trials in both tasks for a total of 1280 trials. The experiment
was divided into eight 10 min blocks. After artifact rejection and
equalizing between conditions, 124.3 ± 22.87 (mean ± SD) trials
remained in T1 and 115.8 ± 29.81 in T2 for each attentional load
per subject. The projected display’s vertical size was 10◦ and
the moving objects’ size was 0.8◦. The subjects were instructed
to look at the center-of-mass of the targets and avoid saccades
between targets.

Analysis of Behavioral Data

Target events were defined as “detected” if the subject
responded with a thumb twitch between 200 and 700 ms from
the onset of the target event and as missed otherwise. Reaction
time (RT) was computed as onset of thumb twitch minus onset
of target event and hit rate (HR) as the fraction of detected
events (Supplementary Figure 1d). Capacity (C) was computed
as C = ((HRT1,L3 + HRT2,L3) ∗ 3 + (HRT1,L4 + HRT2,L4) ∗ 4)/4, where
T1 and T2 indicate tasks 1 and 2, respectively, and L3 and L4
the attentional loads of three and four objects, respectively, so
that at 100% accuracy in all load conditions capacity would
be 3.5. The subjects were divided by their capacity into three
groups: high, middle, and low capacity. High-capacity subjects
had capacity values ranging from 2.62 to 2.96 (mean ± SD,
2.76 ± 0.12), middle-capacity subjects values ranging from 2.01
to 2.54 (2.23 ± 0.18), and low-capacity subjects values ranging
from 1.12 to 2.01 (1.55 ± 0.31). The subjects that were included
in (Rouhinen et al. 2013) were classified similarly in the new
current analysis except for a single subject whose classification
was changed from low to middle capacity. The individual
performance and capacity classification of the subjects are
shown in Supplementary Figure 2.

Performance differences between loads and tasks were eval-
uated with both frequentist and Bayesian repeated measures
ANOVA. Inverse Bayesian factors were calculated with JASP
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(JASP Team 2016) to provide an estimate of evidence for the
performance differences. Uninformative priors were used in
non-posthoc Bayesian testing. BF10 gives the odds ratio for the
alternative and null hypotheses given the data, and BF21 the
odds ratio for alternative with interaction/alternative without
interaction. Dimensions that had statistically significant
differences in the two-way repeated measures ANOVA were
further analyzed with posthoc t-tests. Frequentist posthoc tests
were Holm-Bonferroni corrected. Bayesian posthoc tests were
corrected for multiple testing by fixing to 0.5 the prior probability
that the null hypothesis holds across all comparisons (Westfall
et al. 1997).

Analysis of Eye Motions

Eye motion differences between different load conditions were
estimated using the same trials as in synchrony analyses. Eye
motions were estimated using broad-band filtered (1–120 Hz)
amplitude of the horizontal and vertical EOG channels (eye
motion index, EMI) and the amplitude of the derivative of
eye motion (saccadic motion index, SMI). Two-way repeated
measures ANOVA load × task of eye motions was used to
estimate eye movement differences between load conditions
and tasks. Both frequentist and Bayesian ANOVAs were used.
Dimensions that had statistically significant differences in the
two-way repeated measures ANOVA were further analyzed
with posthoc t-tests. Frequentist posthoc tests were Holm-
Bonferroni corrected. Bayesian posthoc tests were corrected
for multiple testing by fixing to 0.5 the prior probability that
the null hypothesis holds across all comparisons (Westfall
et al. 1997). Correlations between eye movements and capacity
were estimated with Spearman’s correlation test to check if
capacity groups have differences in their eye motions. Similarly
to how the capacity value is calculated, the average eye motion
measures of loads three and four were used in the Spearman’s
correlation test.

Preprocessing of M/EEG Data

Maxfilter software (Elekta Neuromag) (Gramfort et al. 2014) was
used to suppress external noise (temporal signal space sepa-
ration), interpolate bad channels, and colocalize recordings in
signal space in MEG sensors (Supplementary Figure 1b). Fieldtrip
MATLAB toolbox (MathWorks) (Oostenveld et al. 2011) was used
for independent component analysis (ICA) to remove compo-
nents corresponding to eye movements, heartbeat, and muscle
artifacts, as well as activities with a single-channel focus in
spatial distribution, or with greatest power spectral density in
frequencies over 40 Hz. Time series data were then filtered into
narrow-band time series using a bank of 34 complex Morlet
wavelets with the time–frequency compromise term m = 5 and
approximately log-linearly spaced center frequencies ranging
from 3 to 120 Hz with exact frequencies optimized to yield
as many integer–ratio frequency pairs for the analysis of CF
coupling (CFC) with as few wavelet filters as possible (Palva et al.
2005; Siebenhühner et al. 2016). After filtering, the time-series
data were downsampled to sampling rate of five times the center
frequency.

Source Modeling and Cortical Parcellation

Anatomical reconstruction and parcellation with the Destrieux
atlas from MRI images (Fischl et al. 2004; Destrieux et al. 2010)

was performed using Freesurfer (http://surfer.nmr.mgh.harva
rd.edu). Source modeling with minimum norm estimate using
the dSPM method was carried out using MNE software (http://
www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.
php) (Dale et al. 2000; Gramfort et al. 2014). Noise covariance
matrices were computed using preprocessed broad-band
filtered M/EEG time-series from 5 s time-windows taken with
5 s intervals and then used to compute one inverse operator
per subject (200–250 Hz). Only time-windows that were not
contaminated by eye blink or eye movement artifacts were used
for noise covariance matrix computations. The source models
had dipole orientations fixed to pial surface normals and a
7-mm interdipole separation throughout the cortex, yielding
5189–8054 source vertices. Single source narrowband complex
vertex time series were collapsed into parcel time series with
a source-reconstruction-accuracy- (fidelity-) optimized collapse
operator (Korhonen et al. 2014). This optimization was done to
enhance the possibility of detecting true connections among the
spurious connections, see (Siebenhühner et al. 2016) for further
details. We used a 400-parcel parcellation that was obtained
by iteratively splitting the largest parcels of the Destrieux
atlas along their most elongated axis using the same parcel-
wise splits for all subjects (Palva et al. 2010, 2011). The 400-
parcel data were collapsed to a coarser 200-parcel parcellation
before computing interaction metrics to reduce the effects of
intersubject functional variability. Parcels were also assigned
functional labels based on Yeo’s seven-parcel scheme (Fig. 2b)
(Yeo et al. 2011). These steps refer to Supplementary Figure 1a–c.

Analysis of Interareal Synchronization

To identify cortex-wide phase-synchrony networks, we com-
puted individual parcel-to-parcel phase-synchronization for
each condition and frequency in a time window from −700 to –
200 ms before target events (pretarget period)
(Supplementary Figure 1e). Phase-synchronization was esti-
mated using imaginary part (iPLV) of the complex phase-locking
value (cPLV) (Palva et al. 2005). cPLV was defined as:

cPLV = 1
N

N∑
n=1

[
ei(θp(n)−θq(n))

]

where N is the number of samples and θp and θq are the phases
of the time series of parcels p and q; and iPLV = |im (cPLV)|. iPLV
is insensitive to zero-lag interactions and hence yields neither
artificial nor true zero-lag or near-zero lag couplings (Nolte et al.
2004; Vinck et al. 2011; Palva et al. 2018; Wang et al. 2018).

Analysis of Local Oscillation Amplitudes

To investigate the modulation of local oscillations amplitudes,
we used the 34 complex Morlet wavelets to compute amplitude
envelopes for each wavelet frequency for each parcel P across
trials N and samples T: AP = 1

N×T
∑

n,tA(P, n, t). The same −700 to
–200 ms pre-target time data were used as for the synchroniza-
tion analysis. Correlation of the load-dependence of amplitude
with individual attentional capacity was obtained by computing
the correlation between individual capacity and the change
in oscillation amplitude from loads 2 to 4 with Spearman’s
rank test (P < 0.05, corrected) (Fig. 4). Significant differences in
the amplitudes between detected and undetected targets were
obtained using t-tests (P < 0.05, corrected). Amplitude data were
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visualized per parcel on cortical surfaces as the fraction of sta-
tistically significant amplitude differences in frequency dimen-
sion at frequency band selection (Fig. 4), and per frequency
as a fraction of statistically significant differences in parcel
space.

Statistical Analyses

We used a data-driven large-scale data-analysis approach in the
assessment of both the MEG findings and the relationships
between MEG (phase coupling, amplitude, and CFC) and
behavioral (such as attentional capacity) data (Brunton and
Beyeler 2019). In order to not bias the data-analysis with a
priori defined frequency bands, we performed the analyses
on all of them and then identified the frequency bands
where the relationships were the strongest, and visualized
the networks for these frequency bands. Group statistics
were performed separately for each frequency to identify
significant interareal or parcel–parcel interactions. We tested
for significant differences in the strength of synchronization
between detected and undetected targets using t-tests (P < 0.05)
and with load conditions of two or three objects, which had
adequate numbers of both detected and undetected events
(Fig. 2, Supplementary Figure 1g). Correlations of the strength of
synchronization with attentional load, that is, with the number
of to-be attended objects was estimated using Spearman’s rank
correlation tests (P < 0.05) for attentional loads of 2–4 (Fig. 3a,
Supplementary Figure 1h). To estimate in which frequencies
the two tasks differed, we used a two-way repeated measures
ANOVA for attentional loads of 2–4 (Load × Task, P < 0.05, Fig. 3a).
To estimate differences in the strength of load-dependent syn-
chronization and their correlation with capacity, we computed
the correlation (Spearman’s rank test, P < 0.05) between capacity
and the increase of strength of synchronization from loads
2 to 4 for phase synchrony (Figs 3b and 4), for interareal CF
interactions (Fig. 5), and for local oscillation amplitudes (Fig. 4).
Task differences between higher and lower capacity subjects
at single target loads (2 and 3) were estimated with t-tests
(P < 0.05, T2–T1).

We accounted for multiple statistical comparisons in two
steps: the false discovery rate was reduced by removing as
many of the least significant positive and negative findings as
predicted by the alpha-level. We then estimated a threshold
Q to define a joint probability, P′, for the number of signif-
icant observations that could arise by chance in any of the
frequencies of the connection density spectrum. In the interpre-
tation and network visualization stages, only the observations
exceeding the Q threshold are considered. For the 1:1 interareal
synchrony, threshold Q of significant observations remaining
after false discovery correction was estimated to correspond
0.672% connection density at 0.001 chance level. This threshold
was used for the t-tests and Spearman’s correlation tests in
analyses of interareal synchrony (Figs 2a and 3). Connection
density values for load effects were further normalized to a zero
mean. For ANOVA analyses, a threshold of 0.475% connection
density was used, which corresponded to 0.05 chance level
(Fig. 3a).

Analysis of Crossfrequency Coupling
To estimate the interactions across distinct frequencies, we
computed two forms of CFC: phase–amplitude coupling (PAC)
and CFS. We calculated both interareal CFC among all parcel

pairs p and q of the 200 parcels, and local CFC, where p �= q.
We estimated n:m CFS, where the integers n and m define the
frequency ratio so that n·fhigh = m·f low with values n = 1 and m
ε{2,3,4,5,6,7,8} using the PLV:

PLVp,q,n:m,flow,fhigh
= 1

N

∣∣∣∣∣∣
∑
r,t

exp
[
i ·

(
m · θp

(
r, t, flow

) − n · θq

(
r, t, fhigh

))]
∣∣∣∣∣∣

where i is the imaginary unit, N = Nr · Nt, where Nr is the
number of trials r and Nt is the number of samples t within a time
window, θpand θq are the phases of parcel p and q, respectively
(Tass et al. 1998; Palva et al. 2005; Siebenhühner et al. 2016;
Siebenhühner et al. 2020). Frequency pairs were chosen so that
the ratio of their center frequencies lay within 5% deviation of
the desired integer 1:m ratio.

We estimated PAC by computing the PLV between the phase
of the slow oscillation and the phase of the amplitude envelope
of the fast oscillation filtered at f low. PAC was thus defined
as:

PACp,q,flow,fhigh
= 1

N

∣∣∣∣∣∣
∑
r,t

exp
[
i ·

(
θp

(
r, t, flow

) − θE
q

(
r, t, flow, fhigh

))]
∣∣∣∣∣∣

where θE(t, f low, fhigh) is the phase of the filtered amplitude
envelope time series E(t, f low, fhigh) that was obtained by filtering
A(t, fhigh) with the Morlet wavelet w(t, f low):

E
(
t, flow, fhigh

) = A
(
t, fhigh

) ⊗ w
(
t, flow

)
.

In order to correct for potentially spurious observations of
interareal PAC and CFS arising from nonsinusoidal or non-zero-
mean signals (Lozano-Soldevilla et al. 2016), we used a novel
method based on graph theory (Siebenhühner et al. 2020). The
rationale, in brief, is that interareal CFC can only be spurious
if the signal at f low in p and the signal at fhigh in q are also
connected otherwise, namely by local CFC and interareal syn-
chronization between p and q. Thus, observations of interareal
CFC were discarded if we observed either significant local f low:
fhigh CFC in p and significant interareal synchronization at fhigh,
or significant local f low: fhigh CFC in q and significant interareal
synchronization at f low.

Correlation of the load-dependent synchronization with
individual attentional capacity was obtained by computing the
correlation between individual capacity and the increase of
strength of CFS and PAC from loads 2 to 4 for phase synchrony
with Spearman’s rank test for interareal CF interactions (Fig. 5),
and for local CF interactions.

The threshold of significant observations remaining after
false discovery correction (see Statistical Analyses) was esti-
mated by the probability, P′, for a number of significant obser-
vations to arise by chance from graphs of random P-values after
the false discovery reduction in any single frequency out of all
wavelet frequencies. This threshold was estimated to be 0.672%
connection density for the t-tests and Spearman’s correlation
tests in analyses of interareal synchrony, which corresponded
to P′ = 0.001 (Fig. 5). For local CFC, the threshold was 5.5% con-
nection density at P′ = 0.001.
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Removal of Low-Fidelity Cortical Areas and
Connections for Alleviating Source-Space Signal Mixing

A major limitation in connectivity analysis using M/EEG data is
linear signal mixing among recorded signals that after source
modeling remains as residual signal leakage among nearby
parcels, which is dependent on source anatomical location
and individual brain anatomy (Palva and Palva 2012). iPLV
was used to estimate interareal synchronization to exclude
the direct effects of zero-phase lagged linear signal mixing.
Spurious interactions, however, remain even when using zero-
phase lag insensitive connectivity metrics (Palva et al. 2018).
Since the number of spurious interactions is dependent on
the source-reconstructions accuracy, as the first step, we
excluded poorly reconstructable parcel connections from the
graph analysis and visualizations. We removed connections
between parcels for which the source reconstruction accuracy,
fidelity, was below 0.2 (2.0% of parcels) (Korhonen et al.
2014). In addition, to further exclude spurious connections,
we also removed connections of those parcels that exhibited
greatest signal leakage with their neighbors (fidelity radius
greater than 0.3; 7.6% of connections, Supplementary Figure 1f).
In total, 7.6% of all possible connections most prone to
source mixing were excluded from the analyses. These
sources were mostly in the deep and inferior structures
(Supplementary Figure 3) as expected (Hillebrand and Barnes
2002).

Graph Analysis and Visualization

We used graph theory (Bullmore and Sporns 2009) to character-
ize the network structures in group-level adjacency matrices.
Each thresholded adjacency matrix defined a graph made up of
nodes and edges, where nodes are cortical parcels and edges
are the significant interactions between nodes. Connection
density (K) was used to index the proportion of significant edges
from all possible interactions while degree was used to identify
nodes that were central in the graphs and thus putatively
played a key role in network communication. To investigate the
spectral patterns of phase synchrony modulations associated
with multiobject attention, we first plotted the connection
density K for both the positive (K+, strengthening of interparcel
synchrony) and the negative (K−, suppression of interparcel
synchrony) observations as a function of frequency separately
for each statistical analysis (Figs 2a and 3). Graph visualization
was carried out for frequency-bands showing significant
increases in phase synchrony for each condition, so that
before visualization and separately for each statistical contrast,
neighboring narrow-band frequencies were grouped with
hierarchical agglomerative clustering by their adjacency-matrix
(edge) similarity (Palva et al. 2010). Frequencies that formed
clusters and had connection densities above threshold at some
of the clustered frequencies were visualized.

For each selected frequency band, we first constructed
a single graph by summing the adjacency matrices of each
filter frequency in the band. We then selected most central
connections and nodes based on their degree. To further
alleviate the contribution of the remaining spurious edges
(‘false’ interactions) created by the concurrent presence of a
true interaction and linear mixing (Palva and Palva 2012; Palva
et al. 2018), we then applied an edge-bundling approach (Wang
et al. 2018). In this approach, edges that had high linear mixing
were bundled into hyperedges. Only hyperedges consisting of

at least six edges were visualized to decrease the false positive
rate and reduce visual clutter.

Correlation of Amplitudes and the Strength
of Synchronization

To test whether changes in signal-to-noise ratio (SNR) by
changes in the strength of oscillations amplitudes could be
correlated with modulations in the strength of synchronization,
we first normalized oscillation amplitudes and mean node
strengths within subjects. The normalized amplitude and
node strength were correlated with Spearman’s correlation
test (P < 0.05, corrected), either across frequency bands with
all parcels or per parcel.

Results
Psychophysics

To assess the effect of attentional load on behavioral per-
formance, we estimated HR and RT in the responses to the
target objects. Subjects’ performance was similar in tasks
T1 and T2 and with increasing load, HR decreased and RT
increased (Fig. 1b). Two-way repeated measures ANOVA for HR
had a significant main effect of load (F(1.188, 47.503) = 148.165,
P < 0.001; BF10 = 1.929e + 76, with Greenhouse-Geisser correction
because Mauchly’s test indicated sphericity violation; P < 0.001,
ε = 0.396), but neither a main effect of task (P = 0.111; BF10 = 0.166)
nor an interaction effect (P = 0.074; BF21 = 0.392). Similarly
to HR, also RT showed a significant main effect of load
(F(2.026, 81.043) = 127.888, P < 0.001, with Greenhouse-Geisser
correction because Mauchly’s test indicated sphericity violation;
P < 0.001, ε = 0.675; BF10 = 5.871e + 54) and no main effect on
task (P = 0.550; BF10 = 0.139) or an interaction effect (P = 0.360;
BF21 = 0.198). Posthoc tests showed significant differences in
HR between all loads (ranges of tests between 1 and 4 loads:
t = 6.033–14.337, P < 0.001, Holm-Bonferroni corrected, posterior
odds = 2.639e + 4 − 1.021e + 26). Posthoc tests also showed signif-
icant differences in RT between all loads (ranges of tests between
1 and 4 loads except 3 and 4: t = −13.286 to 5.068, P < 0.001, Holm-
Bonferroni corrected, posterior odds = 3.369e + 7 − 1.021e + 26),
with the difference between loads 3 and 4 being small (t = −2.584,
P = 0.014, Holm-Bonferroni corrected, posterior odds = 2.158).

Eye Motion Differences Between Loads and Subjects

As the tasks required tracking of moving visual objects,
eye-movements might differ between attentional loads. To
investigate the putative differences in the frequency of eye
motions between tasks and different target loads, eye motions
were estimated from EOG data using an EMI. EMI measures
saccades and smooth pursuit eye motions, with more eye
motions meaning greater EMI. EMI was different between
attentional load 1 and loads 2–4, but not between loads 2–4
(Fig. 1c). Two-way repeated measures ANOVA of EMI showed
a significant main effect of load (F(3, 120) = 24.811, P < 0.001;
BF10 = 7.844e + 18, no Mauchly’s sphericity violation), but no
main effect of task (P = 0.068; BF10 = 0.477) nor an interaction
effect (P = 0.569; BF21 = 0.805). Posthoc tests on load between one
target and multiple targets showed more eye movements for
multiple targets compared with single target (ranges of 1 vs. 2,
3, or 4: t = −5.582–-5.091, P < 0.001, Holm-Bonferroni corrected,
posterior odds = 5.466e + 6 − 1.161e + 8). Posthoc tests on load
between multiple targets showed strong evidence against
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Figure 1. The schematics of the experiment and psychophysical performance. (a) Left: An example frame of Task 2 with two pink targets and two yellow distractors.

The leftmost object shows a target event. Right: Example of paths of the objects during 45 s. (b) Boxplots of HR and RT for Task 1 (T1) and Task 2 (T2). (c) Boxplots of
eye and saccadic motion indices for T1 and T2. In boxplots, median is marked with a line, and the whiskers extend at maximum to 1× the interquartile range. Lines
above represent significant differences between loads (P < 0.01, Holm-Bonferroni corrected posthoc t-tests).

differences in EMI between the multiple loads (ranges of 2 vs.
3 or 4, or 3 vs. 4: t = −0.026–0.575, P = 1.000, Holm-Bonferroni
corrected, posterior odds = 0.050–0.062). To exclude the potential
confounder of eye-movements in the synchronization analyses,
we therefore used loads 2–4 for subsequent data-analyses.
SMI showed no difference between tasks or different loads
(Fig. 1c). Two-way repeated measures ANOVA of SMI had no
significant effects (most significant of load, task or interaction
effects: F(3, 120) = 1.496, P = 0.219; BF10 = 1.683). The attentional
capacity was inversely correlated with EMI, with lower capacities
being associated with greater EMI (Spearman’s correlation T1:
r = −0.49, P = 0.001, T2: r = −0.48, P = 0.001) as well as with SMI
with a marginal negative correlation (Spearman’s correlation
T1: r = −0.27, P = 0.082, T2: r = −0.17, P = 0.276).

Large-Scale Network Synchrony is Correlated with
Target Detection

We first asked whether increased strength of pretarget synchro-
nization would predict the detection of target events by esti-
mating all-to-all phase synchronization among cortical parcels

for frequencies from 3 to 120 Hz in a 0.5 s time window pre-
ceding the target events (−0.7 to –0.2 s). We assessed whether
synchronization of the detected target events was stronger com-
pared with that of the undetected events (t-test loads 2 and 3,
P < 0.05, corrected). In T1, the strength of theta (θ , 3–4.4 Hz) and
gamma (γ , 45–66 Hz) synchronization, and in T2, the strength of
alpha (α, 7–9 Hz) and γ (45–51 Hz) band phase synchronization
were increased if the target events were subsequently detected
compared with when they were not detected (Fig. 2a). In con-
trast, synchronization in the 30–40 and 70–80 Hz γ -bands was
suppressed in T2. We next plotted the most significant con-
nections of the networks of which strength were increased. To
aid functional interpretation of the connections, we colocalized
anatomical brain regions with the fMRI-based functional sub-
systems (Yeo et al. 2011) (Fig. 2b). In the θ network in T1 occipital
pole, functional part of the V1, as well as superior and middle
occipital gyrus (sOG, mOG) in the right-hemispheric primary,
visual areas were connected to hubs in the posterior parietal
cortex (PPC) with high degree hub nodes in the intraparietal
sulcus (intPS) of the dorsal attention networks (DAN), and angu-
lar gyrus (iPGang) of the default mode network (DMN) (Fig. 2c).
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Figure 2. Large-scale synchrony differs between perceived and unperceived target events. (a) Difference in the strength of synchronization between perceived (Hit)

and unperceived (Miss) target events estimated separately for each parcel-pair and averaged over loads 2–3. Significant difference is plotted as connection density
indicating the fraction of parcels with either significant positive or negative difference in the strength of synchronization as a function of frequency. Positive values
indicate significantly stronger synchrony for perceived than unperceived target events, while negative values indicate stronger synchrony for unperceived target events

(P < 0.05, t-test, corrected). Note, in a given frequency, positive and negative effects can be observed concurrently in different connections. The gray shading (−0.67 to
0.67%) indicates 0.1% chance-level (See Methods). (b) Parcels assignments in Yeo7 parcellation (Yeo et al. 2011); visual (Vis), limbic (Lim), DMN, somatomotor (SM), DAN,
ventral attention network (VAN), frontoparietal network (FPN), and non-colocalized (Mix) parcels. (c) Theta (θ , 3–4.4 Hz) and gamma (γ , 45–66 Hz) band networks that
were stronger for perceived than unperceived target events for T1. Only the 8–10% strongest connections are shown. Vertex sizes and edge widths are relative to node

degree. Networks are visualized on an inflated cortical surfaces, where light areas are gyri and dark areas sulci. (d) Alpha (α, 7–9 Hz) and gamma band (γ , 45–51 Hz)
networks that were stronger for perceived than unperceived target events. Abbreviations: a, anterior; me, medial; int, intra; s, superior; ang, angular; pole, pole; rc,
rectus; tr, transverse; jnS, sulcus intermedius primus of Jensen; CI, cingulate; T, temporal; O, occipital; G, gyrus; and S, sulcus.

The γ network, in contrast, connected visual cortices bilaterally.
Additionally, it connected transverse temporal sulcus (trTS) to
visual regions and nodes within the somato-motor network
(SM). In T2, α-band network nodes in the right lateral occipital
cortex (LOC) were connected with right anterior PFC and right
LOC with left PPC the high degree hubs being angular gyrus
(iPGang) and intPS (Fig. 2d). In contrast, γ network connected

visual regions bilaterally, similarly to T1. We did not observe
significant local oscillation amplitude modulation differences
between detected and undetected target events in either of the
tasks (t-test, P < 0.05, corrected) (Supplementary Figure 4a) and
hence the increases in oscillation amplitudes cannot explain
the increases in the strength of synchronization via increased
SNR.
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Figure 3. Load-dependence of large-scale synchrony is correlated with individual attentional capacity. (a) The correlation of the strength of synchronization with
attentional load was estimated separately for T1 (blue) and T2 (yellow) for each parcel pair (N = 41, Spearman rank correlation tests; P < 0.05, corrected). Connection
density, i.e., the fraction of connections with significant correlation, is plotted separately for positive or negative correlations as a function of frequency. Note in a given
frequency, positive and negative correlations can be observed concurrently indicating the presence of these effects in different connections. Peaks in the connection

density are found in theta (θ , 5–7 Hz), low gamma (lγ , 30–40 Hz) and high-gamma (hγ , > 80 Hz) bands for T1 and in low-alpha (lα, 7–10 Hz), low gamma and high-gamma
bands in T2. Red lines indicate frequencies with the main effect of load, violet with the main effect of task, and green with the interaction (Two-way repeated measures
ANOVA (Load × Task). (b) Correlation of load-dependent synchronization with individual attentional capacity estimated separately for T1 and T2 and for positive and
negative tails as in a (N = 41, Spearman’s rank correlation test, P < 0.05, corrected). Peaks in the connection density are found in theta (θ , 5–7 Hz), low gamma (lγ , 30–

40 Hz) and gamma (γ , 60–80 Hz) bands for T1, and in low-alpha (lα, 7–10 Hz), low gamma (lγ , 30–40 Hz), and gamma (γ , 60–72 Hz) bands in T2. (c) Difference in the
strength of interareal synchronization between T2 and T1 (t-test, P < 0.05, corrected) in load 2. Positive values indicate stronger synchrony in T2 than in T1. Black line
indicates synchronization in high-capacity subjects, gray dashed line in lower capacity subjects. (d) Same as in (c) but for target load.

Load-Dependent Increases in Synchronization
Correlate with Individual Attentional Capacity

If neuronal synchronization plays a role in the regulation of
neuronal processing achieving the attentional functions during
MOT tasks, it should be strengthened as a function of attentional
load. We assessed whether synchronization is strengthened by
attentional load (Spearman’s correlation test loads 2–4, P < 0.05,
corrected, reduced). We excluded load 1, because of differences
in the eye movements compared with the other attentional
loads (2–4) and analyzed data from loads 2 to 4 which showed
no differences in eye motions (EMI or SMI). In T1, interareal syn-
chronization was increased in θ (6–7 Hz), low-γ (30–40 Hz), and
high-γ (90–120 Hz) bands but decreased in the high-alpha (hα,
10–12 Hz) band (Fig. 3a). In T2, interareal synchronization was
load-dependently increased in low θ (3–4.4 Hz), low-α (7–9 Hz),
β (17 Hz), and high-γ (100–120 Hz) bands and again decreased
in the hα band as well as in the 40–50 Hz γ band. Two-way
repeated measures ANOVA of Load × Task (P < 0.05, corrected)

showed task main effects in θ (3–6.5 Hz), α (10 Hz), and β/low-
γ (20–38 Hz), load main effect in α (10–12 Hz), and an interaction
effect in α (10 Hz) (Fig. 3a).

We next tested if load-dependent modulation in the strength
of synchronization was correlated with individual capacity val-
ues. In both tasks, individual capacity was correlated with load-
dependent increase in the strength of synchronization in θ

to low-α (6–9 Hz), low-γ (33–40 Hz), and γ (66–80 Hz) bands
(Spearman’s correlation test, P < 0.05, corrected) (Fig. 3b). In both
tasks, load-dependent increase in the strength of synchroniza-
tion was observed in high-capacity subjects in θ (6–7 Hz), low-γ
(36 Hz), and high-γ (90–120 Hz) bands (Supplementary Figure 5).
In contrast, low-capacity subjects only showed increased load-
dependent synchronization in β (15–23 Hz) band in T1, and θ

(4–5 Hz) band in T2.
T1 and T2 differed in the demand to suppress irrelevant

visual information, which was necessary only in T2. We
therefore further investigated if low- and high-capacity subjects
had differences in synchronization patterns between T1
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and T2 reflecting this demand. To this end, the strength of
synchronization between T1 and T2 was compared for loads
two and three separately for low- and high-capacity subjects. In
low-capacity subject, θ or α band synchronization was stronger
in T2 compared with T1 in both loads 2 and 3 (Fig. 3c,d). Instead
in high-capacity subjects, more β (15–26 Hz) frequency band
synchronization was observed in T2 than T1 in load 3, i.e.,
when the task was more demanding. These results hence
suggested that θ , α, and β band oscillations all contribute to
the suppression of irrelevant visual objects albeit differently in
low- and high-capacity subjects.

Network Synchronization Among Visual and
Frontoparietal Regions are Correlated with Attentional
Capacity

One of the major goals was to investigate in which brain
networks the strength of synchronization preceding the target
event would be correlated with variability of individual atten-
tional capacity. To this end, we extracted the graph structures
and anatomical localization of the networks exhibiting a
significant interaction between attentional capacity and load-
dependent synchrony. In θ and α bands, the strength of long-
range connections between visual cortex and PFC correlated
with capacity, and in T2 also the connections between visual
cortex and PPC (Fig. 4a,b). The network synchronization in
the θ/α was independent of the local oscillation amplitude
modulations, which were not correlated with capacity. Also
in low-γ (lγ ) band, the strongest connections correlated with
individual attention capacity were in the visuo-frontal network
in T1. In T1, capacity was correlated with the strength of
connections in the SM network connected to PPC and PFC. In
addition to synchronization, also local increases in oscillation
amplitudes were correlated with individual attention capacity.
In SM and PFC, the major hubs were indeed colocalized with
increases in oscillations amplitudes indicating that large-
scale synchronization connected the local γ activity across
these cortical areas. However, intPS and nodes in the visual
cortex were independent of the increases in the amplitude of
oscillatory activity indicating the presence of phase-coupling
in the absence of global power effects. In T2 in low-γ band,
capacity was correlated with the strength of connections in
the SM network connected to PPC and PFC. In the higher γ

band (60–80 Hz), connections that correlated with individual
attentional capacity connected primary visual regions and LOC
bilaterally and these visual regions to PFC in both tasks. As
for low-γ band, SM nodes were colocalized with oscillation
amplitudes, while nodes in PFC, PPC or visual cortex were
not. Similar network organization was also found for high-γ
network that was correlated with attentional capacity only in
T2 (Supplementary Figure 6).

Correlation of Synchronization with Oscillation
Amplitudes

To explicitly test the correlation between the strength of
interareal synchronization and oscillation amplitudes and
whether the increases in synchronization were explained by
the increase in the SNR caused changes in the strength of the
oscillation amplitudes, we estimated the correlation between
parcels’ amplitudes and their mean node strengths (Spearman
rank correlation test, P < 0.05, FDR corrected). In both tasks, the
strength of synchronization and oscillation amplitudes were

very weakly correlated (Supplementary Table 1). The correla-
tions ranged from −0.162 < r < 0.219 (mean 0.102) in T1, and
from −0.027 < r < 0.296 (mean 0.148) in T2 when the amplitude
and node strength values were estimated within frequency
bands (Supplementary Table 1). The load-dependent (loads 4–
2) correlations were slightly higher when estimated separately
for each wavelet frequency (Supplementary Figure 7a). Weak
correlation (∼0.23 in both tasks) between amplitude and
synchronization was observed in high α-band (10 Hz), in
which synchronization was load-dependently suppressed
and also in the high-γ band, in which load-dependent high
γ synchronization was found. The strongest correlations
were found in the temporal and occipito-temporal areas
particularly in the high-γ band (Supplementary Figure 7b).
These results show that oscillations amplitudes in terms of
SNR do not explain modulations in the strength of oscillation
amplitudes. Furthermore, the weak correlations between
oscillations amplitudes and synchronization suggest that also
mechanistically these phenomena are largely different, which
was evident also in the lack of colocalization of oscillation
amplitudes and synchronization specifically in the lower
frequencies.

Interareal Crossfrequency Synchronization and
Phase-Amplitude Coupling are Correlated with
Attentional Capacity

In our earlier study on the amplitude effects in the present MOT
data, we observed that γ -band oscillation amplitudes were pos-
itively correlated with attentional load, specifically in subjects
with high attentional capacity (Rouhinen et al. 2013). We have
also observed that concurrent large-scale networks in distinct
frequency bands are CF-phase synchronized during a multiob-
ject VWM task (Siebenhühner et al. 2016). Such cross-frequency
couping (CFC) could underlie the integration of neuronal pro-
cessing across functionally specialized frequency bands and
hence support integration across neuronal processing hierar-
chies (Jensen and Colgin 2007; Schroeder and Lakatos 2009b; Fell
and Axmacher 2011; Palva and Palva 2017).

As we here observed interareal synchronization in the MOT
tasks to take place concurrently in multiple frequencies from θ

to high-γ bands, we next addressed whether these oscillations
would be coupled by CFC in a behaviorally relevant manner. We
evaluated two forms of CFC:CF synchrony (CFS) and PAC. We
estimated both local (i.e., within the same parcel) and interareal
(between distinct parcels) CFS and PAC among all cortical parcels
and between bands having frequency ratios from 1:2 to 1:8
(see Methods), and then tested for all parcel pairs whether the
difference in CFS strength between loads 4 and 2 was corre-
lated with subjects’ individual capacity (Spearman’s rank test,
P < 0.05), as described for 1:1 phase synchronization. We further
used a novel graph-theory-based method (Siebenhühner et al.
2020) to discard spurious observations of interareal CFC that
can arise if there is a nonsinusoidal or non-zero-mean signal
at least one of the two parcels, leading to artificial frequency
components in filtering (and thus spurious local CFC) which
then “spread” to the other parcel by within-frequency interareal
phase synchronization (see Methods). Since this approach can
only detect spurious interareal CFC, no correction for spurious
local CFC was performed.

Genuine interareal CFS was significantly and positively cor-
related with capacity at ratio 1:2 among low-to-high γ frequen-
cies in both T1 and T2, where a larger number of connections
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Figure 4. Graphs of load-dependent networks that are positively correlated with individual attentional capacity. (a) Load-dependent theta (θ , 5–7 Hz), low gamma (lγ ,
30–40 Hz), and gamma (γ , 60–80 Hz) band networks that are positively correlated with capacity in T1. (b) Load-dependent low-alpha (lα, 7–10 Hz), low gamma (lγ , 30–

40 Hz), and gamma (γ , 60–72 Hz) band networks that are positively correlated with capacity in T2. Only the 7–14% of strongest connections are shown. Color of the parcel
shows that also parcel amplitudes are significantly correlated with the attentional capacity, the color indicating the fraction of significant narrow-band frequencies per
parcel. The attentional capacity is predicted by theta and low-alpha band synchronization between visual cortices and PFC as well as by gamma-band synchronization
between bilateral visual regions. Abbreviations: a, anterior; m, middle; i, inferior; s, superior; ang, angular; col, transverse collateral; hip, parahippocampal; int, intra;

ling, lingual; orb, orbital; po, post; rc, rectus; sub, sub; tr, transverse; paC, paracentral lobule; CI, cingulate; IN, insular; F, frontal; P, parietal; T, temporal; O, occipital; G,
gyrus; and S, sulcus.

than that could be expected by chance was observed (Fig. 5).
Individual attentional capacity was also correlated with PAC
of β and γ oscillation phases with the amplitude of high-γ
oscillations at ratios 1:2–1:4 in both tasks. This indicates that
CFC of γ and high-γ oscillations preceding target detection was
correlated with good attentional capacity. Importantly, CFS of hα

with β- and γ -band oscillations was correlated with individual
attentional capacity in T1 showing that hα suppression was

synchronized with higher frequencies that showed increased
task-dependent synchronization. Similarly, also the PAC of α and
also β oscillations with higher frequencies were correlated with
individual attentional capacity.

Negative correlations of CFS with individual capacity were
rare in T1, and for T2 were mostly found between θ-band oscil-
lations with higher frequencies. Similarly to CFS, negative cor-
relations of PAC with capacity were observed mainly for low
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Figure 5. Correlation of load-dependent interareal CFS and PAC with attentional capacity. (a) Connection density (K) of CFS connections for which the increase in

strength from loads 2 to 4 is positively (top row) or negatively (bottom row) correlated with individual attentional capacity. The lower frequency is displayed on the
y-axis and the ratio of the coupling on the x-axis. In T1, the individual capacity was predicted by α oscillations synchronized with β and γ oscillations over ratios. In
both tasks, capacity was also predicted by synchronization between γ and high-γ bands at ratio 1:2. (b) Same for PAC. The individual capacity was predicted by α to
β oscillations phases coupled with the amplitude of higher frequency oscillations across ratios as well as by coupling of γ -oscillation phase with the amplitude of

high-γ amplitudes. Negative correlations were weak for both CFS and PAC.

frequencies in the θ band and all ratios in both tasks. Positive
correlations of local CFS and PAC with capacity, where a larger
number of significant correlations than could be expected by
chance, mostly coupled β and γ with γ and high-γ oscillations
at ratios 1:2–1:6 in both tasks (Supplementary Figure 8).

Discussion
We used a well-validated MOT task (Pylyshyn and Storm 1988;
Oksama and Hyona 2004; Bettencourt et al. 2011) together with
M/EEG recordings to investigate whether large-scale synchro-
nization plays a role in attention to multiple objects and whether
a load-dependent modulation of synchronization would be cor-
related with the variability in individual attentional capacity. We
found that large-scale θ-,α-, and γ -band synchronization prior to
target events was strengthened when the events were detected.
Good individual attentional capacity was positively correlated
with load-dependent strengthening of θ-, lα-, lγ -, and γ -band
synchronization was as well as with load-dependent CFC. Taken
together, neuronal synchronization during attentional visual
tracking was dynamically organized in a task-dependent man-
ner and this multiscale dynamic organization of pretarget activ-
ity correlated with both intertrial and interindividual variabil-
ity in behavioral performance and attentional capacity. These

findings thus constitute evidence for that both within-frequency
synchronization of neuronal oscillations (Singer 2009; Fries 2015)
and their CFC (Palva et al. 2005; Fell and Axmacher 2011; Jensen
et al. 2014; Palva and Palva 2017) may mechanistically contribute
to the integration and regulation of neuronal processing across
functionally specialized brain regions to achieve attentive visual
tracking.

Target Detection is Preceded by Large-Scale
Theta/Alpha- and Gamma-Band Synchronization

Target detection was preceded in both tasks by large-scale γ -
band synchronization as well as by synchronization of the lower
frequency oscillations. While in the general attention task (T1),
synchronization in the θ-band preceded successful target detec-
tion, in the object-based selective-attention task (T2), successful
target detection was preceded by α-band synchronization. These
data thus suggest that in addition to visuo-spatial attentional
control (Doesburg et al. 2016; Lobier et al. 2017; D’Andrea et al.
2019), α-band synchronization may coordinate also object-based
selective attention. Further, the increase in γ -band synchro-
nization is in line with the idea that γ -band synchronization is
related to attended stimulus perception in humans (Siegel et al.
2008).
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This synchronization connected visual regions with PPC
and PFC, including both DAN and then FPN (Kastner and
Ungerleider 2000; Corbetta and Shulman 2002; Sadaghiani
et al. 2009; Ptak 2012; Harding et al. 2015). These regions
are also key regions in predicting MOT performance in fMRI
(Culham et al. 1998; Battelli et al. 2001; Jovicich et al. 2001;
Howe et al. 2009; Alnaes et al. 2015). Importantly, nodes in
the visual cortex also included inferior temporal sulcus (iTS),
which is related to object perception (Riesenhuber and Poggio
2002). These data suggest that during object-based selective
attention, synchronization couples the attentional (PFC and
PPC) systems with those generating the task-relevant object
representations.

Load-Dependent Increase in Synchronization
Correlates with High-Attentional Capacity

In line with prior MOT studies (Drew and Vogel 2008; Bettencourt
and Somers 2009; Drew et al. 2011), we found large individual
variability in attentional capacity. Similarly to prior observations
for VWM capacity (Palva et al. 2010), the capacity of visual atten-
tion correlated with the strength of synchronization. We found
here that load-dependent strengthening of synchronization in
the θ and α bands, together with that in lγ - and γ -frequency
bands, correlated with individual attentional capacity in both
general attention (T1) and object-based selective attention (T2)
tasks. Importantly, specifically strengthening of the long-range
connections between visual cortex and PFC in the θ and α bands
and of the connections between bilateral visual cortices in γ

band was positively correlated with good attentional capacity.
These results suggests that in the present task, both θ- and
α-band synchronization are related to attentional top–down
control in MOT task as previously suggested for visuospatial
attention (Daitch et al. 2013; Harper et al. 2017; Lobier et al. 2017;
D’Andrea et al. 2019) while the γ -band is related to integration
of visual information (Kreiter and Singer 1996; Bosman et al.
2012; Siegel et al. 2012; Womelsdorf et al. 2012). These results are
also in accordance with prior fMRI MOT studies showing that
both visual cortex and PFC exhibit task-load-dependent BOLD
signal increases (Culham et al. 1998; Jovicich et al. 2001) as well
as with our previous findings of load-dependently increased
γ -oscillation amplitudes in visual regions (Rouhinen et al. 2013).

Importantly, the capacity of VWM (Gaspar et al. 2016) and
multiobject attention (Mäki-Marttunen et al. 2020) are known
to be predicted not only by the ability to attend multiple
objects but also by the ability to ignore distractors. We thus
tested if the strength of synchronization would be correlated
with the demand to suppress the processing of irrelevant
visual object information. Interestingly, the strength of θ–
α synchronization was associated with such suppression
demands similarly to that found for local α oscillations (Jensen
and Mazaheri 2010; Herring et al. 2015) albeit only in low-
capacity subjects. In the high-capacity subjects, the suppression
of irrelevant visual objects was correlated with the strength of
β-band synchronization pointing towards a functional similarity
between α- and β-band synchronization on one hand, and
towards differences in functional coordination of executive
processing in low- and high-capacity subjects on the other.
These data are also partially in line with data from attention
blink tasks, in which theta and beta band synchronization
have been associated with encoding and maintenance of
target events—i.e., with sustained attention whereas theta and
alpha-band synchronization have been related to attentional

filtering of relevant visual information among irrelevant targets
(Gross et al. 2004; Glennon et al. 2016).

Overall, our data show that attentional capacity is limited
both by the coupling of visual cortices—essential for repre-
sentation of visual information (Riesenhuber and Poggio 2002;
Grill-Spector and Malach 2004; Sayres and Grill-Spector 2008;
Vinberg and Grill-Spector 2008)—with the PPC and PFC associ-
ated with attention top–down control (Spadone et al. 2015; Mee-
han et al. 2017). Interareal synchronization of neuronal oscil-
lations played a role in both the efficacy of visual information
integration and the suppression of irrelevant objects.

Individual Attentional Capacity is Correlated with the
Strength of Crossfrequency Coupling

A pervasive feature in the present results was the concurrent
presence of multiple networks at distinct frequencies, which
implies that also CFC might be relevant to MOT task perfor-
mance. CFC has been proposed to underlie the integration and
coordination of neuronal processing across functionally spe-
cialized frequency bands (Jensen and Colgin 2007; Schroeder
and Lakatos 2009b; Fell and Axmacher 2011; Palva and Palva
2017). Many prior studies have found PAC to couple fast and
slow oscillations during VWM (Sauseng et al. 2009; Axmacher
et al. 2010; Bahramisharif et al. 2018). We have previously shown
that functional integration of fast and slow oscillatory networks
during multiobject VWM may also be achieved by interareal
CFS (Siebenhühner et al. 2016). As multiobject attention tasks
and VWM tasks share many similarities both at the cognitive
(Pylyshyn and Storm 1988; Luck and Vogel 1997; Cowan 2001;
Cowan et al. 2005; Treisman 2006; Bettencourt et al. 2011) and
at the electrophysiological (Vogel and Machizawa 2004; Vogel
et al. 2005; Drew and Vogel 2008; Drew et al. 2011, 2012; Lapierre
et al. 2017) levels, in the present study, we investigated if either
interareal CFS or PAC were correlated with multiobject atten-
tional capacity. To ensure that our observations of CFC were not
spurious, we use a novel graph-theory-based method to remove
putatively spurious connections (Siebenhühner et al. 2020).

We observed that indeed, load-dependent increases in
interareal CFS as well as PAC between low- and high-γ bands
were positively correlated with attentional capacity in both
tasks, albeit with slightly different spectral profiles. This finding
suggests that individual attentional capacity is dependent on
functional integration of γ and high-γ oscillations. In the prior
analyses of the present data, specifically load-dependent γ

oscillations characterized neuronal activity in subjects with
high attentional capacity (Rouhinen et al. 2013). Our result now
shows that these γ oscillations are nested with each other in
large-scale networks.

Crucially, hα oscillations were CF synchronized with β and
γ band oscillations, this coupling before target onset predicting
good attentional capacity in T1. Hα oscillations that were CF
coupled with higher frequencies were, however, suppressed by
the load this suppression being significantly correlated with
capacity in T1. Similarly, also the PAC of α and also β oscilla-
tions with higher frequencies were correlated with individual
attentional capacity. These data support the hypothesis that in
addition to underlying top–down attention control, theta and α

oscillations provide temporal frames for attended visual percep-
tion (Jensen et al. 2014; VanRullen 2016; Palva and Palva 2018;
Lakatos et al. 2019). However, we found no evidence for that sim-
ilar mechanisms would operate for object-based selective visual
attention task. Together with significant, albeit weak, negative
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of correlation of CFS and PAC of θ band oscillations with higher
frequencies, these data also show that α and γ oscillations are
anticorrelated through dynamical CFC and uncoupling. Thus,
overall, CFS and PAC are behaviorally significant CFC mecha-
nisms in visual attention and may support the regulation of
neuronal processing across frequencies (Palva et al. 2005; Jensen
and Colgin 2007; Palva and Palva 2007, 2017; Axmacher et al.
2010; Canolty and Knight 2010; Voytek et al. 2010).

Relationship to VWM

We found here that the anatomical and spectral patterns of
synchronization as well as CFC are correlated with individual
attentional capacity in MOT tasks. These data suggest that sub-
jects with high-attentional capacity exhibit stronger and more
efficient coordination of neuronal processing among represen-
tational and executive brain regions. These findings parallel
those observed earlier with a comparable delayed match-to-
sample VWM task (Palva et al. 2010; Siebenhühner et al. 2016),
which provides further neurophysiological evidence for that
VWM and visual attention share partially overlapping neuronal
mechanisms (Cowan 2001; Cowan et al. 2005). In the current
MOT task, attentional capacity was positively correlated with
strength of synchronization in lα- (7 Hz) and γ -band phase
synchronization in both tasks. This finding is similar to that in
VWM, where the strength of α- and β-band synchronization was
increased by the load and predicted individual VWM capacity
limits (Palva et al. 2010). In contrast with the VWM, however, hα-
band synchronization in the present MOT task was suppressed
in a manner correlated with individual attentional capacity.
This distinction of α oscillations between VWM and attention
supports the idea that α oscillations are related to internal, self-
oriented processing being enhanced in VWM and suppressed in
visual attention (Klimesch et al. 2008).

Further, in VWM task the strength of α- and β-band synchro-
nization in the PPC correlated with individual VWM capacity
limits, while the attentional capacity in this study was correlated
with the strength of synchronization between visual and frontal
cortices as well as within visual system bilaterally. As in the
VWM, also in visual attention, the strength of CFC interactions
was correlated with individual attentional capacity albeit with
slightly different spectral patterns (Siebenhühner et al. 2016).
These results point to important similarities but also differences
in how synchronization may connect functionally relevant brain
regions in visual attention and VWM.

Our results complement prior studies showing that both local
γ oscillations in source-reconstructed MEG data (Palva et al.
2011; Rouhinen et al. 2013) as well as slow contralateral delay
activity in scalp EEG recordings (Vogel and Machizawa 2004;
Vogel et al. 2005; Drew and Vogel 2008; Drew et al. 2011, 2012)
correlate both with the number of items held in VWM as well
as in the focus of attention in MOT tasks. Taken together, these
evidence support the hypothesis that attended perception and
VWM have partially shared underlying neuronal mechanism
based on processing related to multiband oscillations across
fronto-parietal and sensory brain regions (Watrous et al. 2015a,
2015b).

Conclusions
Our study shows that individual attentional capacity is
positively correlated with load-dependent strengthening of
large-scale synchronization and CFC. Our findings support the

framework where lα synchronization coordinates attentional
processing (Palva and Palva 2007, 2011) by providing “frames”
for sensory processing (Lakatos et al. 2008; Schroeder et al.
2010; VanRullen 2016; Palva and Palva 2018), while the γ -
band synchronization contributes to the processing of visual
stimulus information (Bosman et al. 2012; Siegel et al. 2012).
Our observations are also consistent with CFC among these
oscillations underlying the integration of these functions (Palva
et al. 2005; Palva and Palva 2007, 2017, 2018; Schroeder and
Lakatos 2009a; Lisman and Jensen 2013).

Supplementary Data
Supplementary material is available at Cerebral Cortex online.
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