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A B S T R A C T

Inter-areal functional connectivity (FC), neuronal synchronization in particular, is thought to constitute a key
systems-level mechanism for coordination of neuronal processing and communication between brain regions.
Evidence to support this hypothesis has been gained largely using invasive electrophysiological approaches. In
humans, neuronal activity can be non-invasively recorded only with magneto- and electroencephalography
(MEG/EEG), which have been used to assess FC networks with high temporal resolution and whole-scalp
coverage. However, even in source-reconstructed MEG/EEG data, signal mixing, or “source leakage”, is a sig-
nificant confounder for FC analyses and network localization.

Signal mixing leads to two distinct kinds of false-positive observations: artificial interactions (AI) caused
directly by mixing and spurious interactions (SI) arising indirectly from the spread of signals from true interacting
sources to nearby false loci. To date, several interaction metrics have been developed to solve the AI problem, but
the SI problem has remained largely intractable in MEG/EEG all-to-all source connectivity studies. Here, we
advance a novel approach for correcting SIs in FC analyses using source-reconstructed MEG/EEG data.

Our approach is to bundle observed FC connections into hyperedges by their adjacency in signal mixing. Using
realistic simulations, we show here that bundling yields hyperedges with good separability of true positives and
little loss in the true positive rate. Hyperedge bundling thus significantly decreases graph noise by minimizing the
false-positive to true-positive ratio. Finally, we demonstrate the advantage of edge bundling in the visualization of
large-scale cortical networks with real MEG data. We propose that hypergraphs yielded by bundling represent
well the set of true cortical interactions that are detectable and dissociable in MEG/EEG connectivity analysis.
Introduction

Large-scale neuronal networks, e.g., manifested by functional,
directed, and effective connectivity (Karl, 2011), are thought to be
critical for healthy brain functions while their abnormalities are
thought to underlie many brain diseases (Brookes et al., 2016; Bullmore
and Sporns, 2009, 2012; Fornito et al., 2015; Papo et al., 2014; Petersen
and Sporns, 2015; Rubinov 2015; Sporns, 2014; Uhlhaas and Singer
2006, 2010). Currently, magneto- and electro-encephalography
(MEG/EEG) are the only non-invasive electrophysiological tools for
studying connectivity networks with millisecond-range temporal reso-
lution and good coverage of the cortical surface (Kujala et al., 2008;
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Palva and Palva, 2012; S. Baillet et al., 2001; Salmelin and Baillet,
2009). Accurately identifying interaction dynamics from MEG/EEG
data is of crucial importance for understanding their role in human
cognition and its deficits.

To date, numerous interaction metrics have been developed and
utilized to assess functional connectivity (FC) in terms of amplitude-,
phase-, and phase-amplitude correlations within or across frequency
bands for pairs of electrophysiological signals (Bastos and Schoffelen,
2016; Kreuz, 2011; O'Neill et al., 2015). These pairwise metrics are
typically applied to estimate FC among all brain regions, i.e., to obtain
“all-to-all” FC connectomes (Sporns et al., 2005). Networks of inter-areal
FC are often represented as graphs where brain areas constitute the nodes
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y 2018

r the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:sheng.wang@helsinki.fi
mailto:matias.palva@helsinki.fi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2018.01.056&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.01.056
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2018.01.056
https://doi.org/10.1016/j.neuroimage.2018.01.056


S.H. Wang et al. NeuroImage 173 (2018) 610–622
(or vertices) and observed inter-areal connections the edges (Bullmore
and Sporns, 2009; Rubinov and Sporns, 2010).

FC graphs estimated from MEG/EEG sensor space data are neuro-
anatomically uninformative and severely confounded by signal mixing.
Signal mixing has two facets: first, any focal neuronal signal is picked up
by several sensors. Conversely, one sensor detects a mixture of signals
from several distinct sources. Source reconstruction can be used to reduce
signal mixing and, importantly, elucidate the likely neuroanatomical
sources of the MEG/EEG signals (Buzsaki et al., 2012; Gross et al., 2013;
Hamalainen et al., 1993; Palva and Palva, 2012; Schoffelen and Gross,
2009). Yet, because of ill-posed nature of the inverse problem, no source
reconstruction approach can yield an unambiguous estimate of the
source topography. Residual signal mixing in source space, signal
leakage, is quantitatively dependent on the source-reconstruction
method of choice but qualitatively characteristic to all such methods.

Because of signal leakage, FC measures exhibit two distinct types of
false positive observations: artificial interactions (AI) and spurious in-
teractions (SI), see Box 2 in Palva and Palva (2012). AIs arise directly from
the signal mixing by one true signal being smeared to multiple sensors or
sources, regardless of whether true interactions are present. SIs are
“ghost” interactions caused by the leakage of the signals from two true
connected nodes to their surroundings nodes that in turn become falsely
connected like the truly connected nodes (Colclough et al., 2015; Far-
ahibozorg et al., 2017; Korhonen et al., 2014; Palva et al., 2017; Palva
and Palva, 2012). AIs can be suppressed by a number of bivariate metrics
that typically aim to remove linear coupling terms, and therefore
removing artificial and true interactions with zero- and anti-phase-lag
coupling (for a review see (Palva et al., 2017)). However, the problem
of SIs is much less acknowledged and more difficult to solve because SIs
stem from multivariate mixing effects. With typical distributed source
modeling approaches, signal leakage causes a large number of SIs that
render both the network localization and graph property estimates
inaccurate (Drakesmith et al., 2015). To date, one solution has been
proposed for correcting SIs in oscillation amplitude correlation estimates,
which simultaneously orthogonalizes all source time series through the
L€owdin procedure (Colclough et al., 2015, 2016). Despite this promising
advance, no solutions have yet been proposed to suppress SIs for other
interaction metrics.

Here we advance a novel approach, hyperedge bundling, to alleviate
the SIs problem in connectivity analyses performed with any interaction
metric. Instead of correcting the mixing effects in source signals per se,
the approach is based on quantifying the extent of mixing between all
sources, evaluation of mixing similarity among all edges, and then clus-
tering the raw interaction metric edges into hyperedge bundles. This
procedure aims to yield a hypergraph where each hyperedge represents a
true interaction and its spurious reflections.

In this study, we performed a large set of connectivity simulations and
realistic all-to-all MEG source space analyses, in which we estimated
phase synchrony as a measure of FC with an AI-insensitive metric. We
show that in simulated graphs, hyperedge bundling greatly decreases the
number of false positives, i.e., SIs. We illustrated how bundling can
support an informative visualization of FC graphs with real MEG data.
We suggest that such hypergraphs constitute accurate and unbiased
representations of neuronal interactions observable in MEG/EEG source
space.

Theory

This section covers general topics as follows: signal mixing in MEG/
EEG, how spurious interactions (SI) arise from mixing between sources;
and bundling of raw edges into hyperedges. The implementations spe-
cific to this study are described in the Methods section. Throughout the
report, we denote a connectivity graph estimated from reconstructed
source time series as raw graph Graw ¼ (V, E), where brain regions are
nodes vi 2 V and interactions between nodes are “raw” edges,
ek¼ {(vi,vj)2Ejvi,vi2V}.
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Signal mixing results in false positive artificial (AI) and spurious
interactions (SI)

Let us consider a scenario where a true phase correlation is present
between two distant (unmixed) sources V1 and V2 (Fig. 1A top). The
signals from V1 and V2 are mixed with signals of their nearby and
mutually uncorrelated neighbors V3 and V4. Estimating phase FC among
all four nodes with the phase-locking value (PLV) will reveal both the
true edge E(V1,V2) and false positive “short-range” AIs between the
nearby nodes E(V1,V3) and E(V2,V4), because PLV is inflated by mixing
(thick gray edges, Fig. 1A bottom). However, due to leakage of the signal
from V1 and V2 to their neighbors V3 and V4, false positive “long-range”
SIs E(V3,V4), E(V2,V3), and E(V1,V4) will also be observed (thin dashed
edges). These SIs are thus only indirectly caused by mixing and, unlike
the zero-phase-lag AIs (see 2.2), SIs inherit the phase-lag of the true
interaction (Colclough et al., 2015; Farahibozorg et al., 2017).
Mixing-insensitive bivariate metrics such as the imaginary part of PLV
(iPLV) can remove AIs but do not eliminate SIs if the true coupling has
non-zero phase lag.
Quantifying the mixing between reconstructed sources

Signal mixing/leakage between two sources is instantaneous and
therefore always leads to inflated zero-phase-lag correlations between
the sources. Mixing does not vary over time or across frequency bands
(Brookes et al., 2012, 2014; Drakesmith et al., 2013; Nolte et al., 2004;
Palva and Palva, 2012).

Source-reconstruction
Suppose we have a data matrix X¼ {x(1), x(2), …, x(n)}2ℝn�t repre-

senting narrow-band time series of t samples from n neuronal pop-
ulations. Simulating a MEG/EEG recording, X can be linearly projected to
sensor-space (H€am€al€ainen and Ilmoniemi, 1994):

Y ¼ ΓX þ ε (1)

where Y2ℝs�t represents the forward-modeled time series from s sensors
(n> s). Here, Γ 2ℝs�n is the forward operator (or the lead field) and
ε2ℝs�t is the model prediction error derived from measurement noise.
Next, Y can be projected back into the source-space, e.g., by minimum-
norm estimation (MNE) based inverse modeling:

bX ¼ WY ¼ RΓT
�
ΓRΓT þ λ2χ

��1
Y (2)

where W2ℝn�s is the inverse operator (sources� sensors), the regulari-
zation parameter λ2¼0.1, R is the source covariance matrix, and χ is the
noise covariance matrix. After inverse modeling, the 5000–10000 source
time series are collapsed into parcel time series for a cortical parcellation
with 50–400 parcels. In the present study, we used reconstruction-
accuracy optimized collapsing (Korhonen et al., 2014) and a resolution
of 400 parcels covering the whole cortex.

Cross-talk function and resolution matrix
In MEG/EEG source connectivity studies, a resolution matrix Р ¼ WΓ

(Р2ℝn�n) is often used to describe the relationship between true signals
and modeled signals from n sources in the absence of noise (Farahibozorg
et al., 2017; Hauk and Stenroos, 2014; Hauk et al., 2011; Liu et al., 2002).
In P, each diagonal element quantifies the sensitivity for estimating sig-
nals from that source. Each row of P is the “cross-talk” function (CTF) that
describes the amount of mixing between one source and all other sources.
Each column of P is a “point-spread” function (PSFs) that describes how
the modeled signal from any one source is spread across all other sources.

The mixing function
For the reconstruction accuracy (fidelity) optimized cortical parcel-

lation (Korhonen et al., 2014), we approximated the resolution matrix Р



Fig. 1. Spurious edges are indirect products of mixing and they can be bundled. A) Top: signal mixing causes the detection of artificial (AI) and spurious interactions
(SI). Bottom: AIs are always zero-lag connections (solid gray edge) whereas SIs (dashed gray edges) are “ghosts” of the phase-lag of the true interaction (dashed
black edge) and thus can be either zero-lag or, more often, non-zero-lag interactions. B) Toy model 1: one single true interaction E(V1, V2) on a grid of 13� 13
point sources. Inset shows the simulated mixing neighbourhood of V1 and V2. FC was estimated with iPLV, and the true edge (black) was discovered with multiple
SIs (gray) originating from both sources' mixing neighbourhoods. C) The similarity in signal mixing between all edges (true and SI) can be quantified and all these
edges can be bundled into one hyperedge. D) Toy model 2: three pairs of true edges of varying spatial distance were simulated. E) Partitioned similarity matrix SE,
for toy model 2, where each row represents one edge and one cluster represents a hyperedge (HE). The gray box indicates false-positive (FP) hyperedges; the
magenta and green boxes indicate the inter-hyperedge similarity between the “far” and “nearby” pair. F) Visualization of the hyperedges defined in E.

S.H. Wang et al. NeuroImage 173 (2018) 610–622
numerically with a mixing matrix Amix of dimension n � n parcels. Each
element of Amix is a mixing function (fmix) that characterizes the signal
mixing between two parcels. For uncorrelated true source signals, the
magnitude of zero-lag correlations between reconstructed signals mea-
sures the forward- and inverse-transform caused mixing between the
sources. Thus, fmix can be quantified by the zero-lag correlation between
parcel time series estimated using simulated MEG/EEG measurements of
uncorrelated source noise.

We first generate uncorrelated signals X02ℝn�t, t samples for n par-
cels, and forward transform them to obtain sensor signals Y0 (eq. (1)). We

next inverse transform Y0 to obtain reconstructed signals bX0 (eq. (2)). In
this process, the reconstructed signals bx0ðviÞ, bx0ðvjÞ of any two nearby
sources vi and vj become correlated to a certain degree due to mixing.
Thus, the mixing from the simulated “true” signal x0 (vi) to the recon-
structed signal bx0(vj) can be quantified as:

fmix
�
vi; vj

� ¼ ��re�cPLV�x0ðviÞ; bx0�vj� � ��� (3)

where re () denotes the real part of a complex number and cPLV is the
complex-valued phase locking value (Lachaux et al., 1999):
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cPLVðA; BÞ ¼ 1
T

XT �
eiðθAðtÞ�θBðtÞÞ� ¼ 1

T

XT �
SAS*B

jS jjS j
�
; (4)
t¼1 t¼1 A B

where T denotes the number of samples, θA and θB are the instantaneous
phases of signal A and B; SA and SA are complex-valued narrow-band
signals from A and B, and z* is the complex conjugate of z. Because
mixing is instantaneous, re (cPLV(A,B)) captures all correlations caused
by mixing. For parcel pairs that do not become correlated by signal
mixing, fmix is near zero. For parcel pairs influenced by signal mixing, fmix
» 0 and reaches 1 for complete mixing. It is important to note that
although we here measured mixing using phase correlation, practically
identical quantification would be achieved by, for example, the corre-
lation coefficient as well as by deriving the mixing values analytically
from CTFs and PSFs. Amix is thus interaction-metric independent.
Signal mixing smears a true interaction into multiple spurious interactions

For a simplified illustration of how signal mixing/source leakage
produces SIs, we used toy model with a 13� 13 grid of point sources. The
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mixing matrix Amix of dimension 169� 169, was defined so that mixing
between any two sources was a 2D Gaussian distribution decreasing with
distance between the two sources (inset, Fig. 1B, methods see (Wang
et al., 2018)).

We simulated one true edge by setting two sources V1 and V2 to have
phase coupling of 0.9 with non-zero phase lag and keeping the remaining
167 sources uncorrelated. Next, we introduced mixing between recon-
structed sources and mapped all-to-all phase FC with an AI-free metric,
the imaginary part of the phase-locking-value (iPLV) (Palva and Palva,
2012)

iPLV ¼ jimðcPLVÞj (5)

The iPLV, like the imaginary coherency (Nolte et al., 2004), removes
zero-lag couplings by excluding the real part of cPLV. Therefore, iPLV
yields only the true phase-lagged interactions and their false positive
ghosts (SIs). In this simulation, visualization of the strongest 0.1% of iPLV
edges revealed the true edge and several SIs, all of which connected
sources within the mixing neighbourhoods of the true sources V1 and V2

(Fig. 1B).
Raw edges can be bundled into hyperedge by their mixing similarity (SE)

The mixing similarity can next be derived with the known mixing
matrix Amix to describe how close these edges are with each other in
signal mixing. A bivariate similarity estimation yields a mixing similarity
matrix SE, where each element SE (i, j) quantifies the similarity between
two edges Ei, Ej (for how-to, see 2.6).

Our objective is to classify raw edges by mixing similarity into
“hyperedges”, where each hyperedge is a “bundle” of raw edges (including
true and false-positive SI edges): HEκ ¼ {{ek¼(vi,vj)}2Ejvi,vi2V}. The raw
graph is thereby transformed into a hypergraph Gh ¼ (V, HE). Within any
one hyperedge, all raw edges are mixing-wise close to each other but
distant from the raw edges of other hyperedges, and thus collectively
representing a “community” of raw edges that we hypothesize to include
the underlying true interaction and its ghosting SIs.

This classification can be done by partitioning the SE matrix into
clusters with an appropriate clustering method. In the toy model,
bundling transformed the raw graph with a multitude of false positives
into a hypergraph with one hyperedge that captured the true interaction
with zero false positives (Fig. 1C).

For visualizing hyperedges, we utilized a “force directed edge
bundling” method that both indicates the adjacency of the constituent
raw edges and illustrates the loci where the SIs originated (Holten and
Wijk, 2009).
Hyperedge bundling for multiple true interactions

To demonstrate that bundling could be extended to separate multiple
true interactions, we expanded the simulation and modeled interactions
with three degrees of adjacency: “kin”, “nearby”, and “far”. The esti-
mated raw graph yielded the true-positive (TP) edges surrounded by
numerous false positive (FP) SIs (Fig. 2D). Estimating and partitioning
the edge similarity matrix SE revealed that: 1) two “kin” edges were
inseparable and together with their SIs they merged into the largest
hyperedge HE1 (Fig 2E); 2) the “far” pair was clustered into two clearly
separable hyperedges HE2 and HE5; 3) the “nearby” pair and their SIs
were also clustered into two distinct hyperedges HE3 and HE4 with
greater inter-hyperedge similarity as measured by mean-linkage (green
box) than the “far” pair (magenta box); 4) a few scattered random false
positive edges were also clustered into hyperedges (gray box), but they
were much smaller in size than any of the hyperedges containing a true
edge.

If a hyperedge containing at least one true raw edge is considered as a
TP observation, bundling greatly decreased graph noise in terms of the
FP/TP ratio. FP/TP in raw graph was 239/6 and 4/5 in the hypergraph,
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which marks a reduction in the fraction of FPs by a factor of 50. Visu-
alizing these bundles showed that the hypergraph had less visual clutter
and facilitated identification of the true interactions compared to the raw
graph (Fig. 2F).
Estimation of the edge similarity matrix SE

Hyperedge bundling is based on the raw connectivity graph AFC (a
sparse matrix containing only significant edges), and the mixing matrix
Amix (Fig. 2A, C). We first parsed the edges in AFC into a list of node pairs
(Fig. 2B). We next find the mixing function fmix between all involved
nodes from Amix (Fig. 2C, and illustrated geometrically in Fig. 2D) to
compute the edge-to-edge adjacency in signal mixing.

The edge adjacency matrix (AE)
For a raw graph with m edges, the edge-to-edge adjacency matrix

AE2ℝm � m represents the pairwise mixing adjacency among all raw edges
and is necessary for computing the similarity matrix SE. The adjacency
between two edges Ei(V1,V2) and Ej(V3,V4)} was defined as follows
(Fig. 2D):if V1�V4 are distinct nodes

AE(i,j)¼max [ fmix(V1,V3) fmix(V2,V4), fmix(V1,V4) fmix(V2,V3) ]

elseif V1¼ ¼V3: AE(i,j)¼ fmix(V2, V4)
2

elseif V2¼ ¼V4: AE(i,j)¼ fmix(V1,V3)
2

elseif V1¼ ¼V4: AE(i,j)¼ fmix(V2,V3)
2

elseif V2¼ ¼V3: AE(i,j)¼ fmix(V1,V4)
2

elseif i¼ ¼ j: AE(i,j)¼ 0% diagonal of AE (6)

here “¼ ¼ ” is assertion, “¼ ” is assignment. This algorithm is applied for
all pairs of edges in the raw graph to populate the AE matrix (Fig. 2E).

Evaluation of edge similarity (SE) with correlation of edge mixing profiles in
AE

We denote rows of the AE matrix as the signal mixing profiles so that
AE(i) and AE(j) are the mixing profiles of edges Ei and Ej, respectively, and
thus indicate their mixing adjacency to all the other raw edges in the
graph. If Ei and Ej are similar to each other, i.e., a high correlation be-
tween AE(i) and AE(j), edge Ei will be similar to all the edges in the raw
graph that Ej is similar to, and vice versa (Fig. 2F, G). Such pattern can be
already observed in the simplified models (Fig. 1) where SIs of any given
true edge are all close to each other and adjacent to the true interaction.

Conversely, if two edges are far apart in mixing, their mixing profiles
exhibit little to no correlation. Using correlation estimates of mixing
profiles, it is thus possible to assess the significant similarity of all pairs of
edges in AE and populate the similarity matrix SE 2ℝm � m (Fig. 2H).
Hyperedge bundling is based on the notion that a SE can be partitioned
into clusters of raw edges that are similar to each other in mixing within
each cluster and therefore to collectively reflect a shared true underlying
interaction.
The resolution of hyperedge bundling is defined by the cutoff limit

We partition the edge similarity matrix SE into clusters of “hyper-
edges” so that within any one hyperedge, the raw edges are mixing-wise
close (large SE values) to each other and distant (small SE values) from
raw edges of other hyperedges.

We now introduce a control parameter, the cutoff limit (CL) that dic-
tates the “resolution” of a hypergraph. CL is defined as the ratio of desired
number of clusters to the number of available raw edges to be clustered.
For example, for a graph of 1000 edges, a CL of 0.1 causes the clustering
method to partition the SE matrix into 100 hyperedges. We chose to
control clustering using the CL for better comparability of clustering
methods or graphs of different sizes. The similarity matrix SE 2ℝm � m can



Fig. 2. Bundling of raw edges into hyperedges. A) The true interaction E1 and one of its SIs E2 from Fig. 1B schematically shown in matrix form. B) The raw graph AFC

(a sparse matrix containing only significant edges) is parsed to a list node pairs, each pair representing one edge. C) For E1 and E2, the mixing (fmix) between all of
their constituent nodes can be found in the mixing matrix Amix. D) The edge adjacency (AE) between E1 and E2 is the maximum product of constituent nodes'
mixing. E) AE is computed for all the pairs of edges found in AFC. Data taken from a randomly selected simulation. F) Examples of edges that are similar (blue) and
not similar (red) in their mixing profiles. G) Similarity between two edges is the correlation between two edges' mixing profiles. H) Mixing similarity matrix SE. I)
The partitioning of this SE at low, medium and high resolutions.
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be partitioned into arbitrary number of clusters from 1 to m – 1, i.e., CL
ranging from 1/m to (m–1)/m (Fig. 2I, for technical details on how CL is
related to the depth at which dendrogram was cut into clusters, see
(Wang et al., 2018)).

Validate the stability of hyperedge clustering

To ensure that the hyperedges are not random outcomes of parti-
tioning the similarity matrix, the “stability” of partitioning solutions must
be evaluated. We ask, at any resolution (CL¼ c), if the differences be-
tween the partitioning solutions of n randomly perturbed versions of a
similarity matrix SE is statistically smaller than their surrogate counter-
parts, the partitioning solution can be considered as stable (Fig 2 (Wang
et al., 2018)). The distance between two partitioning solution can be
estimated with the variation of information (Meil�a, 2007). The indepen-
dent perturbations to a similarity matrix can be acquired by randomly
deleting a small subset, e.g., 10 or 20%, of the elements in the similarity
matrix (Ben-Hur et al., 2002; Williams et al., 2015). The surrogates can
614
be obtained by randomly permuting the perturbed similarity matrix.

Methods

The goal of this study was to assess the performance and applicability
of hyperedge bundling in suppressing spurious interactions (SI) in MEG/
EEG source connectivity graphs. To this end, we obtained large numbers
of functional connectivity (FC) graph estimates from simulated data with
realistic sources and inverse modeling. We next evaluated the efficacy of
hyperedge bundling in capturing true positive (TP) interactions and
rejecting false positive (FP) SIs. Finally, we demonstrated the bundling of
FC graphs estimated from MEG data recorded in a visual working
memory (VWM) experiment.

This section includes the procedural outlines of the simulations and
evaluation of bundling efficacy. The preprocessing pipeline, technical
details of the simulations and preprocessing of the VWM experiment are
described in Wang et al. (2018). The Python 2.7 and National In-
struments™ LabVIEW version of the hyperedge bundling program can be
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downloaded from https://figshare.com/projects/Hyperedge_Bundling/
26503.

Simulating “truth” time series of varying coupling strengths

In real electrophysiological data, mixing across source loci and sub-
jects is inhomogeneous (Brookes et al., 2014) and coupling strengths of
neuronal interactions also exhibit great spatiotemporal and inter-subject
variability (Preti et al., 2016; Zalesky et al., 2014). To account for such
variability, we created 1000 distinct truth graphs each containing 200
randomly generated true interactions between 400 cortical parcels in a
standard cortical source space (Destrieux et al., 2010). Each node thus
connected only to a single other node, which allows an unbiased survey
of the whole cortical surface in every graph realization. We did not
simulate structured networks therefore excluding the impact of higher
order SI. These higher order SI can arise from common drive, third-party
sources, and cascade effects, although identifying them is of equal
importance (Mannino and Bressler, 2015; Wollstadt et al., 2015).

For every truth graph, we simulated ten sets of coupled time series,
representing two different modes of coupling, i.e., gamma distribution
(Cλ with maximum coupling of 0.9 and order parameter r ranging from 1
to 20) or uniform distribution (Cc) at 5 different levels of coupling
strength each (Fig 3 (Wang et al., 2018)). A set of uncorrelated null hy-
pothesis time series was also simulated for each truth graph. These null
hypothesis time series were used for estimating the parcel mixing prop-
erties (3.2) and as the baseline condition against coupled conditions in
group analysis.

Estimation of mixing properties using the H0 time series

Mixing in source reconstructed MEG/EEG data is essentially captured
in the forward and inverse operators used in source reconstruction. These
operators are determined by the data acquisition system and specifics of
the individual source model (Wens, 2015). In addition to the mixing
function fmix (see 2.2.3), we characterized the source model used here
with a set of additional mixing metrics obtained from the 12 subjects
from the VWM experiment (Figs. 5 to 7 (Wang et al., 2018)):

1) Parcel fidelity quantifies the reconstruction accuracy and is defined as
the phase correlation between the simulated null hypothesis time se-
ries x0, and reconstructed null hypothesis time series bx0 of parcel vi

fpðviÞ ¼ jreðcPLVðx0ðviÞ; bx0ðviÞÞÞj; (7)

2) Edge fidelity, fe(vi,vj) ¼ fp(vi)fp(vj), that quantifies the reconstruction
accuracy of raw edges connecting two parcels vi and vj.

3) Residual spread function is the correlation between two parcels
reconstructed null hypothesis time series.

PLV0

�
vi; vj

� ¼ ��re�cPLV�bx0ðviÞ;bx0�vj�����; (8)

The definition of PLV0 appears similar to that of fmix, but they are
conceptually different. The fmix measures how much of each source's true
signals are picked up in other sources' reconstructed signals. PLV0, on the
other hand, is the correlation between any two sources' modeled time
series that both are contaminated by mixing with numerous other sour-
ces. Because the iPLV estimates can be biased by mixing (Palva et al.,
2017), we used PLV0 to exclude edges connecting sources with large
mixing.

Elimination of poorly measurable edges with the intractable-edge-mask (IEM)
We applied an intractable-edge-mask (IEM) to exclude edges that

connect sources with poor reconstruction accuracy. True interactions
between these sources may exist, but cannot be reliably detected because
estimations of connectivity between them are unreliable due to the
limitations of the source model. We utilized the mixing properties and
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construct a group-level IEM in two steps:

1) With average edge-fidelity <fe> and the residual spread <PLV0>, we
create two Boolean masks:
i. The edge-fidelity mask (Mfe) to exclude edges with low fidelity,

thereby removing edges connecting poorly reconstructed sources.
ii. The residual spread mask (MPLV0) to exclude edges with large

PLV0, thereby removing edges whose FC estimates likely are much
distorted by mixing between these loci (Palva et al., 2017).

2) The IEM is the union of these two masks.

In this study, we set 0.1 as the threshold for Mfe, which removed the
40% most poorly reconstructed edges from all 79,800 (N(N�1)/2,
N¼ 400) possible edges in raw graphs (for anatomical details of the
mixing properties and the IEM, see Figs. 8C and 9 (Wang et al., 2018)).
The MPLV0 was acquired by deleting edges whose PLV0 was greater than
the 95th percentile of the PLV0 matrix.

Estimation of group-level FC of simulated graphs

The group-level significant iPLV estimates thresholded with the IEM
were used as raw graphs for hyperedge bundling. The group-level anal-
ysis for the simulated graphs and for real MEG/EEG data in the VWM
experiment were carried out in the same manner. For simulated graphs,
we forward- and inverse-modeled the coupled truth time series into 12
subjects’ individual source space, thereby introducing mixing into
reconstructed signals (Schoffelen and Gross, 2009). We next estimated
iPLV connectivity for these subjects. We then tested across subjects, for
each edge in every estimated FC graph, whether there was a significant
difference (one-tailed t-test) in the iPLV estimate between the coupled
and the H0 condition. Those edges that showed a significant difference
were identified as raw edges (corrected for multiple comparisons within
each FC graph). We acquired FC graphs with three significance levels
p< 0.05, 0.01, and 0.001 for each of the ten coupled time series.

Hyperedge bundling with two clustering methods

After applying the IEM to all group-level FC matrices, we followed the
procedures described in Theory to obtain the similarity matrix SE for each
FC. We next partitioned each SE into clusters of hyperedges with two
clustering methods. The unweighted pair group method with arithmetic
mean (UPGMA) is an agglomerative hierarchical clustering method that
builds a rooted hierarchical tree to represent the distance in signal mixing
between all raw edges (Jain et al., 1999). The Louvain method for
community detection extracts communities by optimizing the modularity
of clusters through a gradient descent procedure (Blondel et al., 2008).

Comparing hypergraphs with raw graphs

We denoted the TPs as the edges from truth graphs that were iden-
tified as significant edges in the group-level FC matrix, and FPs as sig-
nificant edges in the group-level FC matrix but absent in the truth graph.
Thus, the true positive rate (TPR, sensitivity) is given by TPR¼ TP/Ntrue*,
where Ntrue* is the number of “detectable true edges” referring to the
number of simulated true edge that passed the intractable-edge-mask. We
further defined the noise as the FP to TP ratio. An ideal group-level FC
should capture as many of the true interactions as possible while
rejecting other edges, i.e., high TPR and low FP/TP.

We used TPR and FP/TP as the main criteria to characterize raw
graphs instead of the commonly used receiver operating characteristic
curve (ROC) for two reasons. First, the ROC is derived from the TPR and
false positive rate (FPR) which are not directly comparable between raw
graphs and hypergraphs, as these are different constructs; second,
because the number of FP is disproportionally larger than that of TP (as
shown later with an example), the shape of the ROC is misleadingly
optimal when limiting the number of raw edges with varying edge weight

https://figshare.com/projects/Hyperedge_Bundling/26503
https://figshare.com/projects/Hyperedge_Bundling/26503
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threshold.
We defined a TP hyperedge (TPHE) as a hyperedge capturing at least

one TP raw edge, whereas a FP hyperedge (FPHE) contained only FP raw
edges. Hyperedges may also contain multiple TP raw edges. To quantify
this, we defined separability as the fraction of true positive hyperedges
that contain only one TP raw edge out of all true positive hyperedges. An
ideal hypergraph should balance high TPR and separability against low
noise (FP/TP).

Results

This section includes three parts: 1) Demographics of group-level FC
of the simulated graphs; 2) Efficacy of hyperedge bundling; 3)
Fig. 3. The demographics of group-level FC of simulated graphs A) Significant edg
condition (k1) and the H0 condition for simulated graphs. B) For initial evaluatio
set of uniform-distribution-coupled (Cc) graphs, which are indicated by the marker
90%. D) The true positive rate (TRP) as a function of noise (FP/TP) for all coup
exponentially, while the number of TP decreases linearly. Inset shows the ROC of C
mean iPLV of TP or FP edges alone, and all edges.
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Application of hyperedge bundling to real MEG data.

Group-level FC as raw graphs

In individual subjects, mixing introduced by the virtual MEG exper-
iment distorted PLV, iPLV and the phase-lag of all measured graphs of
varying coupling strength including the H0 time series (Fig 10 (Wang
et al., 2018)). To find group-level significant edges, we tested for each
edge whether there was a difference in iPLV value between the coupled
condition and the H0 condition (Fig. 3A, see 3.4). Edges that showed a
significant difference were reported as raw edges. Thus, we obtained FC
graphs for each of the ten sets of coupled graphs at three significance
levels of p< 0.05, 0.01 and 0.001.
es were determined with a paired one-tailed t-test between a coupled-edge
n of bundling, we chose one set of gamma-distribution-coupled (Cγ) and one
s. C) True positive rate TPR (see methods) of the two chosen graphs was above
ling strengths. E) In the chosen sets of graphs, the number of FP decreases
γ edge weights threshold. F) Noise (FP/TP ratio) as a function of TPR. G) The
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Raw graphs of iPLV edges are noisy
Overall, the number of significant iPLV edges increased as coupling

strengths increased (Fig. 3B). The group-level graphs at all 3 significance
levels captured over 75% of all detectable TP edges, except in the case of
weak uniform coupling, Cc(0.1) (Fig. 3C). We simulated 200 random
edges in each ground truth graph and computed the true positive rate
(TPR) for each measured group graph as the number of significant edges
divided by the number of all simulated true edges that passed through the
intractable-edge-mask (IEM). Despite the high TPR, there was a large
variability in graph noise (FP/TP) among these graphs (Fig. 3D).

Is strict statistical thresholding a good solution for pruning FPs?
We chose the graphs of gamma coupling (Cλ) with order parameter r

of 15 and uniform coupling (CC) with coupling of 0.5 to test statistical
thresholding (below) and hyperedge bundling because they had com-
parable TPR (Fig. 3C) and equivalent true edge strengths (see distribution
in Fig 3 (Wang et al., 2018)). Moreover, both contained only ~750 edges,
which mitigated computational overhead in later clustering analyses.

One sensible way to identify key structures in FC graphs is to apply a
statistical threshold to iPLV values. We found that by increasing the
significance iPLV threshold, the number of FP edges decreased at a faster
rate than the number of TP edges in both graphs (Fig. 3E). Around 120 of
the 640 strongest edges were TP, giving a TPR >90% for 125 detectable
true edges, but a FP/TP ratio of 4. When retaining the 20 strongest edges
reduced the FP/TP to 0.1 (Fig. 3F) but at the cost of reduced TPR,
(TPR¼ 0.15). Overall we found that the mean iPLV of TP edges was
larger than that of FP edges’ (Fig. 3G), which suggests that strict
thresholding is an applicable solution for reducing FP/TP but comes at a
price of an elevated false negative rate, although the shape of ROC curve
appeared to be optimal (inset Fig. 3E).

Hypergraphs yields better FP/TP than raw graphs with reasonable TPR cost

The stability of clusters
Evaluating the stability of clustering was a necessary step prior to

further analysis of the properties of hyperedge clusters. The resolution of
clustering and thereby of the hypergraphs was controlled by the cutoff limit
(CL, see 2.6). We used bootstrapping to identify the CL range that yielded
stable partitioning of the raw graphs (seeMethods and Fig 2 of (Wang et al.,
2018)). We found that at CL< 0.4, both UPGMA and Louvain clustering
yielded significantly more stable partitions for simulated graphs than their
randomly rewired counterparts (Fig. 4A). For the 640 raw edge graphs, this
CL upper bound corresponded to ~250 hyperedges. In the following
analysis, we thus tested bundling with CL ranging from 0.05 to 0.45.

Cluster-size distribution
We next quantified the distributions of hyperedge sizes (numbers of

raw edges per hyperedge, Fig. 4B) by pooling hyperedges from 500
clustered graphs with CL ranging from 0.05 to 0.45. As expected, we
found a systematic shift towards smaller hyperedges with increasing
resolution/CL. The Louvain method consistently yielded more small
hyperedges than UPGMA.

Hyperedge-bundling performance: trade-offs between separability, TPR and
graph noise

Hyperedge bundling aims to detect and separate as many TP in-
teractions as possible while rejecting as many FP as possible. We tried to
find an optimal balance among these competing outcomes by taking into
account two aspects of hyperedge bundling: separability and noise. We
defined separability as the ratio between singleton TP hyperedges (con-
taining only one TP raw edge) and all TP hyperedges, and noise as the FP/
TP ratio of the hyperedges. An ideal hyperedge partitioning would thus
have separability¼ 1, FP/TP~0, and a TPR equal to the TPR of raw edges.

We observed that by increasing the hyperedge resolution (CL from
0.05 to 0.45), the separability increased but noise also increased with both
clustering methods (Fig. 4C, D). Thus at coarse resolutions (low CL),
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multiple TP raw edges were partitioned into one hyperedge but there
were very few FP hyperedges, likely because there were less small-sized
hyperedges. Conversely, at fine resolutions (high CL), separability was
improved but at the cost of having greater numbers of FPs.

Knowing that small hyperedges are more likely to be FPs than large
hyperedges (Fig. 1E), we further tested whether excluding hyperedges by
size would decrease noise. At each resolution level, excluding small
hyperedges lead to a decrease in noise (FP/TP decreased with increasing
θHEsize, Fig. 4C, D). Nevertheless, this was accompanied by reduced
separability (y axis, Fig. 4C, D) and a reduced TPR (Fig. 4E, F) caused by
the removal of small-sized TP hyperedges together with FP hyperedges.

To summarize, at all graph resolutions, hypergraphs were less noisy
than raw edge graphs. In the least noisy hypergraph (e.g., Louvain,
CL¼ 0.05 and θHEsize> 8), 87% of the 125 TP raw edges were retained
while achieving a 103-fold decrease in noise compared to the underlying
raw graphs, i.e., FP/TP decreased from (640-125)/125¼ 4.1 (Cγ raw
graphs in Fig 3E) to 3.8� 10�3 (leftmost filled box on the cyan curve,
Fig. 4F). Nevertheless, this improvement came at the cost of poor sepa-
rability, meaning many hyperedges in CL¼ 0.05 graphs contained
several true edges. To balance an optimal trade-off, we decided to use
CL� 0.15 and θHEsize> 2, expecting to achieve a reduction of FP/TP to
0.1 (from 4.1 in raw edges) with negligible reduction in TPR and
adequate separability (0.5).

Louvain clustering yields less noisy hypergraphs but lower separability than
UPGMA clustering

The Louvain method produced more small hyperedges than the
UPGMAmethod (Fig. 4B). Although the Louvain hypergraphs had higher
level of noise when retaining singleton hyperedges (θHEsize¼ 0), this
relation was inverted when singleton hyperedges were screened
(Fig. 5A). This indicates that the majority of the singleton hyperedges
yielded by Louvain were FPs. Moreover, the Louvain hypergraphs had
greater TPR when CL values were between 0.15 and 0.25 (Fig. 5B). These
advantages, however, came at the cost of separability, which was better
with UPGMA throughout the tested range (Fig. 5C).

Visual working memory networks: real MEG data

To assess the feasibility of using hyperedge bundling with real MEG/
EEG data, we applied bundling to raw graphs that reflected significant
strengthening of inter-areal phase synchronization during memory
retention compared to pre-stimulus baseline during a visual working
memory task (see (Wang et al., 2018) and Honkanen et al., 2015).

We found that the iPLV estimates in alpha- and gamma-frequency
band were greater during memory retention than in pre-stimulus base-
line. Here, we picked the 1000 strongest iPLV edges and drew them as
lines linking the synchronized parcels on a flattened cortical surface
(Fig. 6A, B). We also illustrated a randomly picked graph from our sim-
ulations as a comparison (Fig. 6C). We applied hyperedge bundling
(UPGMA with CL¼ 0.15, θHEsize> 6) to these raw graphs. The resulting
hypergraphs, the real MEG and simulated FC graphs alike, offer better
visualization of large-scale FC than raw graphs, emphasizing the long-
range synchronizations between brain regions (Fig 6D–F).

Discussion

MEG and EEG have great potential for yielding insight into the spatio-
temporal structure of brain connectivity. Nonetheless, due to the ill-
posed nature of the inverse problem, linear mixing and inaccurate
source localization complicate MEG/EEG connectivity analyses both by
distorting phase and amplitude estimates and by leading to false positive
observations of artificial (AIs) and spurious interactions (SIs). We
advance here a novel methodological framework, hyperedge bundling, to
suppress SIs in brain connectivity graphs. We found that hyperedge
bundling can be used to reduce the false positive rate with moderate to
little decrease on the true positive rate.



Fig. 4. Hyperedge bundling outperformed raw edges. A) The hypergraphs created with both clustering methods were stable below CL of 0.4. B) The cumulative
distribution function (cdf) of hyperedge size at different levels of CL, computed with hyperedges pooled from 500 graphs with 100 iterations within each graph.
For both clustering methods C) and D), increasingly strict hyperedge size threshold (θHEsize varying from 0 to 8) caused separability and noise level (FP/TP) to
decrease. E,F) The retained true positive raw edges also decreased as hyperedge size threshold increased.
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Fig. 5. Louvain clustering method yielded hypergraphs with lower noise but also lower separability than UPGMA. A) For CL values 0.15–0.45, Louvain hypergraphs had
lower noise after singleton hyperedges were deleted. B) True positive rate TPR was larger in Louvain hypergraphs for CL values 0.15 and 0.25 and larger in
UPGMA hypergraphs for CL values 0.35 and 0.45. C) Separability was higher for UPGMA method.

Fig. 6. Hypergraphs improve visualization of
real and simulated data. Visual crowding of
numerous group-level iPLV edges of 1:1
phase synchronization in A) alpha and B)
gamma frequency band during VWM reten-
tion (real MEG data), C) a simulated graph
overlaid on a flattened 2D map of cortical
regions. D, E, F) Hypergraphs of A,B,C). D)
In alpha band, bundles of long-range
hyperedges connect occipital and parietal
areas. Hyperedges were created with
CL¼ 0.15, θHEsize> 6. E) In gamma band,
long-range hyperedges were observed in the
frontal and central regions. On these 2D
maps, different parcel colours indicate
functional sub-systems defined by (Yeo
et al., 2011) and in hypergraphs, edge col-
ours are obtained by mixing of the colours of
connected parcels. CN: cuneus; CS: central
sulcus; iPGsup: supramarginal gyrus; mFG:
middle frontal gyrus; mOG: middle occipital
gyrus; mOS: middle occipital sulcus and
lunatus sulcus; laSp: posterior ramus; prCG:
precental gyrus; pCIm: middle posterior
cingulate; prCN: precuneus; sPG:superior
parietal lobule; sOG: superior occipital
gyrus.
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Hyperedge bundling has several features that are advantageous and
facilitate its application. First, since it is done only after interaction an-
alyses, it does not require sophisticated preprocessing to suppress mixing
effects in the original source time series. Hyperedge bundling only re-
quires the forward and inverse operators and a mixing function estimated
analytically or from simulations. Accordingly, it inherently takes the
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source-model heterogeneity appropriately into account. Hyperedge
bundling is also independent of the interaction metric and can be applied
to connectomes estimated with any bivariate interaction metric. Finally,
the nodal groups in the hypergraph obtained from hyperedge bundling
constitute data-driven coarsening of originally high-resolution source
parcellations. We suggest that these nodal groups are more
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representative of the true co-active local areas than a priori constructed
low-resolution parcellations. This can be a subject for future work.

In summary, hyperedge bundling can be used to suppress SIs and
identify putative true edges in brain connectivity data and thereby to
improve the localization of true interacting neuronal networks.

Hyperedge bundling vs. edge thresholding: reducing FP/TP while
maintaining acceptable true positive rate

Some connectivity studies have reduced the amount of edges by
applying strict criteria on edge selection. However, biases and instability
of graph properties can be introduced when using arbitrary threshold
criteria on raw edges (Drakesmith et al., 2015; van Wijk et al., 2010) and
weak connections may also play an important role in cognitive functions
(Santarnecchi et al., 2014). Nevertheless, imposing strict criteria for
thresholding is an attractive option for increasing the fraction of true
positives among all observations, i.e., decreasing the FP/TP ratio (see
Fig. 3E, F) and for focusing the outcome on most robust effects. However,
this approach, while effective in excluding FPs (SIs), also excludes a large
fraction of true positives. For example, we found that in raw graphs when
we applied a threshold strict to decrease noise (FP/TP dropped from 4 to
0.1), but the TPR was reduced to 0.15. In contrast, with hyperedge
bundling we could obtain the same noise level (FP/TP of 0.1) while
preserving a TPR of up to 0.88 (see brown line, Fig. 4F). Hyperedge
bundling is thus superior to strict thresholding in attenuating FP/TP with
little decrease in TPR.

Importantly, our simulations show that the raw edges with the largest
estimates of interaction strengths might not correspond to the strongest
or most important neurophysiological couplings, because the interaction
estimates are biased by reconstruction accuracy (Fig 9A (Wang et al.,
2018)). Considering that the reconstruction accuracy is highly hetero-
geneous across the cortical surface (Korhonen et al., 2014; Wang et al.,
2018), this bias is another reason for including weak observations in FC
graphs. In particular, thresholding FC graphs by correlation strengths will
predispose the resulting network to be composed of nodes with the
greatest reconstruction accuracy.

Control parameters of hyperedge determine resolution and the balance
among FP/TP, TPR, separability

In the current implementation, hyperedge bundling is controlled by
the cutoff limit (CL) and the hyperedge size threshold (θHEsize). CL de-
termines the resolution of the hypergraph and the balance between noise
(FP/TP) and separability of true hyperedges. Low CL values lead to low
noise in hypergraphs but poor separation of true raw edges into distinct
hyperedges. θHEsize can be used to prune the smallest hyperedges to
further reduce noise, albeit at a cost of pruning TP hyperedges.

We compared two clustering methods, UPGMA and Louvain. While
the results showed clearly that by and large both clustering methods
yielded similar performance, each method had interesting advantages.
Louvain yielded better TPR than UPGMA for CL values between 0.05 and
0.25 (see Fig. 5B), and lower noise when singleton hyperedges were
excluded (see Fig. 5A). UPGMA, on the other hand, yielded better
separability of TP hyperedges throughout the control parameter ranges.
Overall, using either clusteringmethod with CL¼ 0.15–0.25 and θHEsize¼
1–2 will yield a large reduction in FP/TP (from 4 to 0.1–0.2) with good
separability and negligible reduction in TPR.

In applications to real data where the truth graph is unknown,
choosing parameters, i.e., to control the trade-off between suppressing
noise and maintaining high TPR and separability, can be based on both
our simulation results and objectives of the research. If the objective of
the hypothesis requires good separability (e.g., establishing connectivity
between specific visual areas to inferior parietal region), one should
create high resolution hypergraphs, but this will be accompanied by sub-
optimal noise reduction. Conversely, if the objective is to establish con-
nectivity between the visual and parietal regions, a low resolution
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hypergraph (with low noise) is pertinent.

Comparison of hyperedge bundling and symmetric orthogonalization

Symmetric orthogonalization is a pioneering solution to the overall
problem of SIs in the context of amplitude correlation estimation (Col-
clough et al., 2015). Its predecessor, pairwise orthogonalization (Brookes
et al., 2012; Hipp et al., 2012) excluded instantaneous mixing and
evaluated amplitude correlations for each time-series pair at a time. The
cross correlation between orthogonalized is a bivariate AI-freemetric and
therefore not immune to SIs (Palva et al., 2017).

Symmetric orthogonalization overcomes the problem of SIs by
simultaneously removing zero phase-lag components from all source
time series through a gradient descent procedure known as the L€owdin
orthogonalization (Everson, 1999; L€owdin, 1950). Next, all-to-all
amplitude correlations are estimated with partial correlation of ampli-
tude envelopes to keep direct and remove indirect interactions (Marrelec
et al., 2006). Because the partial correlation matrix is expected to be
sparse, a graphical lasso regularization of the inverse covariance matrix is
applied to penalize near-zero elements (Banerjee et al., 2008; Friedman
et al., 2008), which reduces noise in the partial correlation graph.

Symmetric orthogonalization effectively attenuates SIs caused both
by signal leakage and by indirect true couplings (i.e., A ↔ C correlation,
when true correlations are A ↔ B ↔ C). The two limitations of this
method are: i) it is applicable only to the estimation of amplitude cor-
relations, ii) it is limited by the rank of the data due to its dependence on
singular value decomposition. For MEG/EEG data that are preprocessed
with signal space separation (SSS) and temporal SSS methods, the rank of
the data (~degrees of freedom) is often limited to 60–70 (Haumann
et al., 2016). Thus, symmetric orthogonalization should be applied to
cortical networks with less than 60–70 independent sources, such as the
19 regions per hemisphere used in (Colclough et al., 2015). For studying
FC with greater parcellation resolutions (»70) or with interaction metrics
other than amplitude correlations, hyperedge bundling thus provides an
alternative method for SI suppression. The similarities and differences
between symmetric orthogonalization and hyperedge bundling are
summarized in Table 1.

The choice of source modeling and interaction metric

The choice of the MEG/EEG source reconstruction method influences
source-level connectivity analysis through their differences in sensitivity
to point-like, distributed, or time-varying source topographies (Hincapi�e
et al., 2017). Although we used linear L2 minimum-norm based inverse
operators (Hamalainen and Sarvas, 1989; Hamalainen and Ilmoniemi,
1994; Lin et al., 2006), hyperedge bundling can also be used with other
source reconstruction methods as long as the amount of mixing among
the sources/parcels can be quantified. Likewise, any
parcellation-generation approach, such as the
reconstruction-accuracy-optimized (Korhonen et al., 2014) or adaptive
(Farahibozorg et al., 2017) parcellations, will function with hyperedge
bundling.

Finally, although we here evaluated the mixing function with the
phase-locking value and used the imaginary part of the complex phase-
locking value for estimating connectivity, both the approach and the
results are generalizable to other interaction metrics (Palva et al., 2017).
Essentially identical mixing functions may be obtained by other metrics
that quantify a linear relationship, such as the correlation coefficient, or
analytically, as suggested by Farahibozorg et al. (2017), and hence there
is no need to adapt the mixing function estimation to the choice of the
interaction metric applied in the data analyses.

High resolution parcellations are beneficial for hyperedge bundling

Parcel numbers in recent MEG/EEG source connectivity studies range
from tens of parcels, e.g., 38 in (Colclough et al., 2015) and around 70 in



Table 1

Symmetric orthogonalization
(Colclough et al., 2015)

Hyperedge bundling

Type of FC � Amplitude-correlation � Any form of FC or EC
Data for FC
estimation *

� A symmetric multivariate
correction is first operated
on Z (narrow-band
amplitude-envelope time se-
ries) to obtain P that is the
best approximation of Z in
multivariate linear regression
sense, and in P, each source's
time series is simultaneously
orthogonal to each other thus
zero-phase-lag free between
all source-pairs. P's
amplitude-envelope is next

down-sampled to obtain P
�

� Any narrow- or broad-band
time series

� Estimation of the mixing
functions: fmix (vi,vj) and
edge-fidelity fe (vi,vj) is a
prerequisite

Procedure of
FC
estimation

� 2 steps: 1) regularize Ω (the
inverse of covariance matrix
of ~P), imposing sparsity
(Friedman et al., 2008) on the
graph to maximise the
log-likelihood of a multivar-
iate Gaussian graph model; 2)
Compute partial correlation
based on the regularized Ω

� 2 steps: 1) estimate pairwise
FC, 2) bundle raw edges
obtained in (1) using fmix

(vi,vj)

Advantages � Effective in removing SIs
� Regularized partial

correlation reports direct FC
between Peand excludes
indirect FC

� Computational effecitient

� Requires no alteration to
source-reconstructed time
series

� Not limited by the rank of
the source time series,
which allows a high spatial
resolution source estimates

� Hyperedge bundling can be
used with any directed or
undirected interaction
metric

Limitations � Blind to true zero-phase-lag
interactions

� Likely insensitive to low SNR
sources

� Limited by the rank of the
time series

� Risk of reporting false
positives if the time series
are non-Gaussian

� Blind to true zero-phase-lag
interactions dependent on
the choice of the interaction
metric

� The resolution of the
hypergraph is a free
parameter
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(Farahibozorg et al., 2017; Hillebrand et al., 2012), up to 200–400 par-
cels (Lobier et al., 2017; Siebenhuhner et al., 2016; Zhigalov et al., 2017).
Both approaches have their advantages. Low-resolution parcellations
yield minimal mixing between parcels as well as manageable computa-
tional cost and numbers of interaction observations. Using finer spatial
resolutions increases the computational cost and number of observations
but, on the other hand, may enable the separation of nearby independent
signals to a maximal extent allowed by the source reconstruction
approach. Fine resolution analyses, i.e., redundant oversampling of the
source space, also safeguard the analysis outcome from the possibility
that the actual neuronal source constellations or degrees of freedom in
the data are different from those of the used parcellation scheme. In the
worst-case scenario, coarse parcellations can misrepresent or miss source
areas that fall in between the parcels or are much smaller than the
parcels.

Hyperedge bundling is likely to be suboptimal for low-resolution
source spaces, where the mixing similarity between observed edges is
likely to be low due to initial low mixing among neighboring parcels and
overall only small numbers of edges are observed. With fine-grained
parcellations, the mixing profiles among raw edges are sufficiently
redundant and the numbers of edges are adequate for reliable edge
clustering, which produces hypergraphs with good confidence of both
capturing and separating true interactions. As a future direction, the
621
nodal groups connecting hyperedges can be utilized to coarsen a fine-
grained source space in a data-driven manner while taking into ac-
count the constraints posed by the source model.
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