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Blind Source Separation of Event-Related
EEG/MEG

Johanna Metsomaa∗, Jukka Sarvas, and Risto Juhani Ilmoniemi

Abstract—Objective: Blind source separation (BSS) can
be used to decompose complex electroencephalography
(EEG) or magnetoencephalography data into simpler com-
ponents based on statistical assumptions without using a
physical model. Applications include brain–computer inter-
faces, artifact removal, and identifying parallel neural pro-
cesses. We wish to address the issue of applying BSS to
event-related responses, which is challenging because of
nonstationary data. Methods: We introduce a new BSS ap-
proach called momentary-uncorrelated component analysis
(MUCA), which is tailored for event-related multitrial data.
The method is based on approximate joint diagonalization of
multiple covariance matrices estimated from the data at sep-
arate latencies. We further show how to extend the method-
ology for autocovariance matrices and how to apply BSS
methods suitable for piecewise stationary data to event-
related responses. We compared several BSS approaches
by using simulated EEG as well as measured somatosen-
sory and transcranial magnetic stimulation (TMS) evoked
EEG. Results: Among the compared methods, MUCA was
the most tolerant one to noise, TMS artifacts, and other
challenges in the data. With measured somatosensory data,
over half of the estimated components were found to be sim-
ilar by MUCA and independent component analysis. MUCA
was also stable when tested with several input datasets.
Conclusion: MUCA is based on simple assumptions, and
the results suggest that MUCA is robust with nonideal data.
Significance: Event-related responses and BSS are valu-
able and popular tools in neuroscience. Correctly designed
BSS is an efficient way of identifying artifactual and neural
processes from nonstationary event-related data.

Index Terms—Blind source separation (BSS), electroen-
cephalography (EEG), event-related fields, event-related
potentials, independent component analysis, magnetoen-
cephalography (MEG), transcranial magnetic stimulation
(TMS).
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I. INTRODUCTION

WHEN event-related responses of the brain are recorded
with electroencephalography (EEG) or magnetoen-

cephalography (MEG), resulting in evoked potentials or evoked
fields, respectively, several responses to the repeated stimuli
are measured. Data-driven blind source separation (BSS) tech-
niques are beneficial in extracting signal sources from the re-
sponses. BSS divides the data into components, each of which
has a fixed spatial pattern in the sensor space and a waveform
in the time domain. These techniques do not require compli-
cated modeling of the physical properties of the signal sources
or the head conductivity distribution. Therefore, there can be
both intra- and extracranial sources originating from neural and
nonneural processes. Instead, statistical properties of the under-
lying components need to be modeled in order to make their
separation possible.

The interpretation of the evoked responses can be complicated
due to several temporally overlapping neural processes. For ex-
ample, a deflection in the averaged EEG may correspond to sev-
eral parallel neural activations. The advantage of BSS in EEG
analysis is that such overlapping processes can be separated
from each other and, thus, their interpretation becomes simpler
than that of the original data (see, e.g., [13] and [25]). BSS on the
single-trial level can be used in online signal analysis, includ-
ing brain–computer interfaces [10], [23]. In addition, BSS is an
efficient way of removing artifacts, e.g., high-amplitude tran-
scranial magnetic stimulation (TMS) evoked artifacts in EEG,
and uncovering neural responses from artifactual data [12], [18],
[22].

Even though evoked potentials are highly nonstationary, it
has been common to apply BSS methods designed for station-
ary data on evoked EEG [11], [12], [16], [20], [30], [31], [34]. To
get unbiased estimates for the hidden components, we present
several BSS methods that all take into account the nonstation-
arity in the evoked data. We also make extensive comparisons
between these techniques.

We introduce a BSS method called momentary-uncorrelated
component analysis (MUCA) to decompose multitrial
EEG/MEG data into momentary-uncorrelated components, i.e.,
components that are uncorrelated at each latency after the stimu-
lus. MUCA is based on approximate joint diagonalization (AJD)
of covariance matrices estimated at separate latencies of the
evoked data. We call these the momentary covariance matrices
(MCMs). Since the evoked responses are nonstationary, such
components can be found unambiguously provided that the
computed MCMs have enough variability over time. MUCA
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takes the MCMs as the input data to which AJD is applied.
We also introduce a two-step filtering procedure to reduce the
measurement and the sampling noise in the MCMs.

AJD is a commonly used approach in the BSS of EEG and
MEG. In addition to covariance matrices, the target matrices to
be diagonalized can also be, for example, autocovariance ma-
trices. The simplest form of joint diagonalization is having two
target matrices [4], [33]. In many BSS applications, however,
there are more than two matrices to be diagonalized, which is
the case with second-order blind identification (SOBI) [2], [3]
and JADE [5]. When the number of target matrices is more than
two, exact joint diagonalization is, in general, not possible, and
one has to resort to AJD. Several algorithms exist for AJD [9],
[27], [28], [36], [37].

Nonstationary data have also previously been proposed suit-
able for AJD-based BSS methods. Some methods are based
on dividing a long recording of nonstationary data into blocks,
within which the data are stationary. Computing the autocovari-
ance matrices in each of these blocks and applying AJD to all of
them yields sufficient amount of information for separating the
components [6], [7], [29]. In this paper, we also illustrate how
to use this same idea of jointly diagonalizing autocovariance
matrices in the case of evoked multitrial data. We further show
how any BSS method suited for piecewise stationary data can
be applied to event-related data.

We compared MUCA and other BSS methods suited for non-
stationary data using both simulated and measured EEG. In
general, the MUCA estimates were more accurate than those
obtained by the other methods, even at the presence of high-
amplitude TMS-induced artifacts. In this paper, we deal with
EEG but the used methodology is applicable to MEG as well.

A. Notation

Let A be an m × n matrix, with elements A(i, j), 1 ≤ i ≤ m,
1 ≤ j ≤ n. We denote the ith row of A by A(i, :), i = 1, . . . , m,
and the jth column by A(:, j), j = 1, . . . , n.

We also use three-dimensional (3-D) arrays with the follow-
ing notation. Let A be a 3-D array with elements A(i, j, k), i =
1, . . . ,m, j = 1, . . . , n, and k = 1, . . . , q. For a fixed i, the
notation A(i, :, :) denotes the 2-D matrix with elements
A(i, j, k), j = 1, . . . , n, and k = 1, . . . , q. For a fixed j or k,
the 2-D matrices A(:, j, :) or A(:, :, k) are defined analogously.
Furthermore, for a fixed i and j, the notation A(i, j, :) denotes
the vector with elements A(i, j, k), k = 1, . . . , q. The vectors
A(:, j, k) and A(i, :, k) are defined analogously.

If x is a scalar, vector, or matrix random variable, we denote
its expectation value by E(x) and variance (when x is scalar) by
var(x). For an m × n (data) matrix X, the sample mean is given
by μX = n−1 ∑n

j=1 X(:, j). The covariance matrix of a random
vector x is denoted by cov(x) = E((x − E(x))(x − E(x))T).
We denote the sample covariance matrix by cov(X) and define
it as

cov(X) =
1
n

n∑

j=1

(X(:, j) − μX)(X(:, j) − μX)T . (1)

In the time-series x, the autocovariance matrix between two
separate time instants p and q is denoted by covp,q (x) =
E((xp − E(xp))(xq − E(xq ))T). If Xp and Xq are m × n sam-
ple matrices from xp and xq , respectively, the sample autoco-
variance matrix between them is denoted by cov(Xp ,Xq ) and
computed by

cov(Xp ,Xq )

=
1
n

n∑

j=1

(Xp(:, j) − μXp
)(Xq (:, j) − μXq

)T . (2)

II. MATERIALS AND METHODS

A. Theory

1) Multitrial Event-Related Data: We assume that the
evoked responses are measured with Nc channels, at Nt succes-
sive time points, and in Ntr trials, resulting in a 3-D data array
X, where the matrix element X(i, j, k) is the EEG signal in the
ith channel at the jth time instant in the kth trial. A trial refers
to a single stimulus repetition.

We assume that the data obey a linear model, where the
measured EEG data are due to Nh hidden (or latent) components
and additive noise, defined as

X(:, j, k) = AS(:, j, k) + ε(:, j, k), (3)

for j = 1, . . . , Nt , k = 1, . . . , Ntr where A is an Nc × Nh mix-
ing matrix, which is independent of time and trials, S is an
Nh × Nt × Ntr time-course array, and ε contains noise. Here,
A(:,m) is called the topography of the mth component. The
vector S(m, :, k) is called the time-course (or waveform) of mth
component in trial k. We assume that Nc ≥ Nh = rank(A).

2) Statistical Model of the Data: For a fixed time in-
stant j, we use the notations Xj = X(:, j, :) and Sj = S(:, j, :).
In the statistical analysis of the model (3), we assume that the
column vectors Sj (:, k), k = 1, . . . , Ntr, are random samples
of a momentary random variable sj . Note that each time instant
j corresponds to a different probability density function p(sj ),
which allows for nonstationary statistics for the components.
The linear model assumed for the momentary random variables
xj and sj at any given j is given as

xj = A sj (4)

where Xj (:, k), k = 1, . . . , Ntr, are random samples of a vari-
able xj . For simplicity, the noise term is ignored here. We may
set various statistical modeling assumptions on sj .

Due to (4), the MCMs are given as

cov(xj ) = Σj = AΛjAT, for j = 1, . . . , Nt (5)

where Λj = cov(sj ). For the components that are uncorrelated
at a time instant j, Λj is diagonal.

The momentary autocovariance matrices (MACMs) can be
expressed according to (4) by

covj,j ′(x) = Σj,j ′ = AΛj,j ′AT, for j, j′ = 1, . . . , Nt
(6)

with Λj,j ′ = covj,j ′(s). If the components do not correlate be-
tween separate time instants j and j′, Λj,j ′ is diagonal.
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If the components of sj are independent,

p(sj ) = p(sj (1)) · · · p(sj (Nh)). (7)

In the following, we illustrate different approaches of BSS as-
suming uncorrelated or independent components and taking into
account the time-varying statistics of the event-related data. In
all the approaches, the aim is to find estimates for the mix-
ing matrix and the waveforms matrix in (3) based on the given
multitrial data.

3) BSS by Momentary-Uncorrelated Components
Analysis: We assume that the components of sj are un-
correlated for all j = 1, . . . , Nt , i.e., they are momentary-
uncorrelated. The sample momentary covariance matrix
cov(Xj ) = Cj approximates Σj , and cov(Sj ) = Dj approx-
imates Λj , which is diagonal. The statistical model (5) implies
that

Cj = ADjAT and Dj = A−1Cj (AT)−1 (8)

where we may assume that A is a square matrix obtained by
data compression based on the principal component analysis
(PCA), which is generally performed also prior to ICA [15].
Because Dj s are approximately diagonal, (8) shows that A−1

is the approximate joint diagonalizer of C1 , . . . ,CN t . Thus, we
can use AJD algorithms to find an estimate Â for the mixing

matrix, whereafter Ŝj = Â
−1

Xj .
In this paper, we applied the following AJD algorithms: FF-

Diag, J-Di, ACDC, and Pham’s algorithm, for details, see [37],
[28], [36], [27], respectively. These algorithms assume that the
covariance matrices are symmetric square matrices that change
as a function of time, i.e., the data are nonstationary [1]. Pham’s
algorithm also assumes that the MCMs are positive definite.
Note that the data do not need to be whitened.

4) Filtering the MCMs: Let us again consider (3), which,
with the notation Xj = X(:, j, :), Sj = S(:, j, :), and εj =
ε(:, j, :), reads as

Xj = ASj + εj , j = 1, . . . , Nt . (9)

Because εj is not correlated with Sj ,

Cj = cov(Xj ) = Acov(Sj )AT + cov(εj ) . (10)

We assume that the measurement noise is stationary or almost
stationary in the sense that cov(εj ) varies slowly with time, i.e.,
cov(εj ) ≈ cov(ε). In addition to the measurement noise, there
is sampling error in Cj due to the limited number of trials.
Before applying AJD to the MCMs, we filter them in two steps
in order to suppress the sampling and the measurement noise.

We filter by moving averaging with Gaussian weights
wk,j , 1 ≤ k, j ≤ Nt . The filtered sequence of the MCMs
CF

1 , . . . ,C
F
N t

is given by

CF
k =

∑N t
j=1 wk,jCj

∑N t
j=1 wk,j

, where wk,j = e−
1
2 ( k −j

d )2
(11)

with d > 0 controlling the width of the averaging Gaussian
“curve.”

In the first step, we filter C1 , . . . ,CN t using weights wk,j

with a small value for d, and get the sequence C(1)
1 , . . . ,C(1)

N t
.

Fig. 1. Example of filtering the MCMs computed using somatosensory
evoked potentials. The blue curve (upper) is the original variance in the
channel 37 (between C3 and P3 in the 10–20 EEG system). The red
curve is the filtered variance. Note that the filtered variance curve also
gets negative values.

This filtering suppresses the high-frequency part of the sampling
error in cov(Xj ). In the second step, we filter C1 , . . . ,CN t with

a large value for d, and get the sequence C(2)
1 , . . . ,C(2)

N t
, which

contains the slowly drifting part (mostly measurement noise) of
the covariance matrices. The final filtered sequence is given by
the differences

C̃k = C(1)
k − C(2)

k , k = 1, . . . , Nt . (12)

We can also write these filtered MCMs as

C̃k = A(D(1)
k − D(2)

k )AT + cov(εk )(1) − cov(εk )(2)

≈ A(D(1)
k − D(2)

k )AT, k = 1, . . . , Nt (13)

where D(1)
k , cov(εk )(1) , and D(2)

k , cov(εk )(2) are obtained by
the filtering steps 1 and 2, respectively. Filtering suppresses the
stationary noise term in (13), because cov(εk )(1) ≈ cov(εk )(2) ,
and reduces the sampling error in D(1)

k − D(2)
k .

The sequence of filtered MCMs from (12) is the one to which
we apply AJD. According to (13), the underlying structure of
these target matrices has been preserved so that A−1 still jointly
diagonalizes the filtered ones. It is notable that the filtered matri-
ces are no longer positive definite. Thus, Pham’s AJD algorithm
is not applicable to the filtered MCMs. In practice, d in the
two types of filtering is experimentally tuned to yield efficient
noise suppression. An example of the effect of the filtering is
presented in Fig. 1.

5) BSS of Uncorrelated Components Over Time
Lags: If the hidden components are uncorrelated over time
lags, we may further include MACMs for the AJD procedure
described in the previous section. The symmetrized form of
MACM with time index pair j, j′ is approximated by Cj,j ′ =
0.5[cov(Xj ,Xj ′) + cov(Xj ′ ,Xj )]. The same joint diagnonal-
izer A−1 then yields

A−1Cj,j ′(A−1)T = Dj,j ′ (14)

where Dj,j ′ = 0.5[cov(Sj ,Sj ′) + cov(Sj ′ ,Sj )], which is diag-
onal if the hidden components are uncorrelated over the time
lag defined by j and j′ [see (6)]. In practice, some subset



METSOMAA et al.: BLIND SOURCE SEPARATION OF EVENT-RELATED EEG/MEG 2057

of time lags (τ1 , . . . , τP ) is used in the estimation so that
j′ = j + τp , p = 1, . . . , P for each j = 1, . . . , Nt − τp . AJD
is applied to the sequence of MACMs with all the selected time
lags. The estimation tends to get more accurate with increasing
number of target matrices if the assumptions of uncorrelated-
ness are correct. Overall, this approach is somewhat similar to
the SOBI algorithm [2], [3], with the important distinction that
the autocovariance matrices are allowed to vary with time j.

For noisy autocovariance matrices, cov(Xj ,Xj+τ ) =
Acov(Sj ,Sj+τ )AT + cov(εj , εj+τ ). Filtering by (12) can be
applied to the MACMs by replacing Cj by Cj,j+τ in (11).
Again, we assume that noise is (almost) stationary such that
cov(εj , εj+τ ) does not change with j. When using multiple
time lags, filtering is performed for each of them separately.

6) BSS by ICA and Utilizing Piecewise Stationarity:
Independent component analysis can be used to estimate the
hidden components if they are independent and non-Gaussian.
ICA algorithms typically assume that all collected data sam-
ples originate from the same (joint) probability distribution.
Thus, they are usually not suitable for nonstationary evoked
EEG where only momentary independence according to (7) can
be assumed.

In [22], we showed that, after a special preprocessing, Fas-
tICA [14] can uncover hidden components even from highly
nonstationary evoked EEG, whereas otherwise ICA is unsuc-
cessful with these kind of data. Here, we refer to this approach
as nonstationary FastICA (FastICA-ns).

Another way to apply ICA to nonstationary data is Block
EFICA, which is a modified version of the FastICA algorithm
and designed for piecewise stationary data [17]. Block EFICA is
based on the assumption that a long recording of nonstationary
data can be divided into blocks within which the components are
stationary. According to (4), multitrial data can be reorganized
to fulfill the assumption of piecewise stationarity by forming
concatenated data as Y = [X1 , . . . ,XN t ], with Nt successive
stationary blocks Xj , each of length Ntr. In fact, any BSS algo-
rithm designed for piecewise stationary data, for example, the
Barbi algorithm described in [32], can be applied to evoked re-
sponses after reorganizing the data in this manner. MUCA can
also be interpreted from this perspective. Thus, it can be viewed
as an extension of the BSS algorithm suggested for Gaussian
piecewise stationary sources in [27].

7) Estimating the Waveforms: The estimated averaged
time-courses are given by the sample means of Ŝj as Ŝave =
[μŜ1

, . . . , μŜN t
]. Using the estimated mixing matrix in (8), the

variance waveform of component i is approximated by the sam-
ple variances of Ŝj (i, :) as Ŝvar(i, :) = [D̂1(i, i), . . . , D̂N t (i, i)].
Note that any statistical parameters of the components can be
computed as a function of time j by using the samples Ŝj .

B. Simulations

All the data simulations and analyses were performed on
MATLAB (The Mathworks, Inc., Natick, Massachusetts, USA).
The sample matricesSwere generated by a two-step process. We
started by generating stochastic, stationary data containing sam-
ples S̃: For a fixed component i and trial k, the first sample was

Fig. 2. Waveforms of the simulated components in an example trial.
The polarities of all the components are here set positive.

randomized from the normal distribution S̃(i, 1, k) ∼ N (0, 1).
For the following time instants, the samples were recursively
computed by

S̃(i, j, k) = ri,j,k + a S̃(i, j − 1, k), j = 2, . . . , Nt (15)

where a is a constant defining the degree of smoothness of the
time-courses S̃(i, :, k), and ri,j,k ∼ N (0, 1) was randomized
for every sample separately. This procedure was taken for all
the components i and the trials k.

To make the waveforms nonstationary, the amplitudes of S̃
were modulated with time-dependent envelopes ui,j as

S(i, j, k) = S̃(i, j, k)ui,j + ui,j . (16)

Comparing (16) with the statistical model for sj , the compo-
nents had both the variances var(sj (i)) ∝ u2

i,j and the means
E(sj (i)) = ui,j varying as a function of time j. Thus, the nonsta-
tionarity was regulated entirely by the selection of the envelope
function. Importantly, these hidden components are mutually
independent at each moment of time and they have diagonal
MCMs and MACMs. The recursive process (15) does not nec-
essarily need to be stable, since the envelope in (16) controls the
amplitudes.

The envelopes were defined by

ui,j = exp{(j − μi)2/(2h)2} (17)

where μi is the time index where the amplitude of the ith com-
ponent is largest on average and h determines the duration of its
nonzero activity on average. The amplitudes were scaled so that∑

j,k S(i, j, k)2/(Nt · Ntr) = 1 for all i. We set the simulation
parameters a = 10, h = 15, and the centers μi, i = 1, . . . , Nh ,
were equally spaced within the time axis 1 ≤ j ≤ Nt . An ex-
ample trial of the simulated components is illustrated in Fig. 2.

The mixing matrix A was randomized as a square matrix,
the condition number being controlled between 0 and 300.
The noiseless data X were constructed using (3) without the
noise term. The Nc × Nt × Ntr noise matrix ε was added to the
data as spatially colored and temporally white Gaussian noise
with zero mean. The noise covariance matrix was stationary,
cov(εj ) = cov(ε), and its condition number was 502 , based on
the experience from measured data covariance matrices. The
noise amplitude was scaled according to the predefined noise
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Fig. 3. Averaged evoked somatosensory EEG data after right median
nerve stimulation. There is an electric artifact at the start of the signal.

level, NL, defined as

NL =

√ ∑
i,j,k ε(i, j, k)2

∑
i,j,k X(i, j, k)2

. (18)

NL indicates how large the noise is relative to the noiseless
signal amplitude; it is the inverse of the signal-to-noise ratio
(SNR). Finally, the data were formed by using (3).

The simulations were run with several simulation parame-
ters using ICA, MUCA, and AJD of MACMs to compare how
accurately they could recover the hidden components. Gener-
ally, unless otherwise stated, the simulation parameters were
chosen as Nc = Nh = 20, Nt = 150, Ntr = 150, a = 10, NL
(=1/SNR) = 1, and the mixing matrix condition number was
50.

1) Measuring the Accuracy of the Simulation Re-
sults: The comparison of MUCA and ICA was based on the
inner products between the true and the estimated topographies.
For the ith component, we used the following coefficient for
measuring the quality of the estimation:

ci =
|Â(:, i)TA(:, i)|

‖Â(:, i)‖ ‖A(:, i)‖ (19)

where Â is the estimated mixing matrix and A the true one. The
coefficient ci is 0 in the worst case and 1 for a perfect match.
The estimation of the ith component was considered accurate
enough if ci was greater than 0.9. The number of components
exceeding this level was termed as the number of accepted
components (NAC).

Note that the columns in Â are initially estimated in a random
order. Therefore, the estimated columns in Â were reordered
based on the greedy matching in the following way: First the
columns in Â and A with the largest coefficient, c1 , were found.
These column were removed from the matrices, and the next
best pair of columns was found, which had the second largest
coefficient c2 . The procedure was continued similarly, always
using the remaining matrices where the previously matched
columns had been removed.

The data were generated 100 times for each selection of sim-
ulation parameters. The averaged NAC was computed over each
set of 100 runs and for each BSS method separately.

C. Measurements and the Analysis of the Measured
Data

EEG data were recorded from three healthy right-handed sub-
jects aged 25–30 years using a 60-channel TMS-compatible
Nexstim eXimia EEG device with the sampling frequency of
1450 Hz. The subjects gave their written informed consents be-
fore the experiments. The studies were approved by the Ethics
Committee of Helsinki University Hospital and they were in
compliance with the Declaration of Helsinki.

Somatosensory evoked potentials (SEPs) to electrical right
median nerve stimulation on thenar were measured (DS7A Dig-
itimer Ltd., Welwyn Garden City, U.K.). The duration of each
rectangular pulse was 100 μs. The current was 80% above the
sensation threshold to evoke clear EEG responses without caus-
ing pain. The intervals between the consecutive stimuli were
randomized between 2 and 3 s. 178 (subject S1) and 100 (sub-
ject S2) trials were collected. The averaged evoked EEG data of
S1 are shown in Fig. 3.

To record TMS-evoked potentials (TEPs), biphasic magnetic
pulses were delivered using the Nexstim eXimia TMS stimula-
tor, a figure-of-eight coil, and an MRI-guided navigation system
(all from Nexstim Ltd., Helsinki, Finland). The stimulation hot
spot of the subject’s (S3) right abductor pollicis brevis mus-
cle in the primary motor cortex and the corresponding resting
motor threshold (rMT) were determined using the Nexstim eX-
imia EMG system. Thereafter, 167 stimuli were delivered to this
same target area with random intervals of 2–3 s and the stimulus
intensity of 100% of the rMT.

In addition to the neural signals, the measured data contained
both stimulus-independent artifactual elements (most notably
due to eye blinks) and noise. Preprocessing was performed to
remove these unwanted signals. The whole preprocessing pro-
tocol was as follows:

1) The data in the interval of −500 to 500 ms with respect
to the stimuli were selected.

2) The stimulus-independent artifacts were eliminated using
FastICA.

3) The datasets were filtered in the time/frequency domain:
for S1 and S2, we used the SOUND algorithm (see Ap-
pendix A), and for S3, filtering with the pass band of 1–45
Hz was performed. We also performed spatial filtering by
SOUND.

4) The average potential over the channels was set as the
reference potential.

5) Compression by PCA was used to decrease the data di-
mensionality.

6) The MCMs were computed.
7) The MCMs were filtered by (13).

After the preprocessing, FFDiag was used to jointly diago-
nalize the MCMs within the time interval of 10–120 ms for
the SEP data and 0–120 ms for the TEP data. The choice of
using FFDiag was based on its good performance with simu-
lated data and short computational time. For simplicity, auto-
covariance matrices were not included in the estimation here
since, as discussed later, with the simulated data, AJD ap-
plied to MACMs did not convincingly improve the results even
though the simulated noise was temporally white. The results
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with the MACMs were also variable depending on the selected
time lags, and it was not clear how they should be selected
optimally.

1) Assessing the Feasibility of BSS With the
Evoked Responses: The aim of analyzing the SEP data
was to perform feasibility testing on the BSS of evoked data by
cross validating between two different BSS methods that rely
on similar statistical assumptions. To this aim, after step (iv),
FastICA-ns was also applied on the data as described in [22].
FastICA-ns was selected here as the comparison method for
MUCA based on its good performance with simulated data (see
Section III).

We compared the mixing matrices found from the SEP
datasets by ICA and MUCA. The MUCA- and ICA-estimated
topographies were paired by greedy matching. The goodness of
match cm was measured as the absolute value of the normalized
dot product between the matched topographies [as in (19)].

After topographically matching the components, we also
compared the corresponding waveforms estimated by MUCA
and ICA. This estimation is influenced by noise unrelated

to the actual waveforms: In Ŝ(:, :, k) = Â
−1

AS(:, :, k) +
Â

−1
ε(:, :, k), there is the first noiseless part and the second

componentwise-mapped noise part. Because of the noise, the
waveform comparison is reasonable only when the component
amplitude is considerably higher than its noise level. Therefore,
we determined the latencies at which the waveform amplitudes
peaked above the noise level and compared whether these laten-
cies were similar for MUCA and ICA.

The high-amplitude latencies were determined as follows.
The noise level was computed within the prestimulus inter-
val of −400 to − 10 ms with respect to the stimulus. During
this baseline period, the mean and the standard deviation of
each averaged waveform in Ŝave were computed. Then, during
the poststimulus period, we identified the time intervals dur-
ing which each averaged waveform deviated from its mean by
more than three standard deviations. The latencies were set at
the maxima/minima waveform amplitudes during the identified
time intervals. These extrema were automatically found by lo-
cally fitting a third-order polynomial within each of the time
intervals. The same approach of determining the latencies was
applied to the variance waveforms Ŝvar.

We also checked how stable the obtained mixing matrix es-
timate was when only a subset of trials was taken into con-
sideration. The stability test was as follows. Half of the trials
were randomly chosen. Thereafter, the covariance matrices were
computed using the randomized trials, and MUCA was used to
find the components. The obtained mixing matrix was compared
with the mixing matrix retrieved from all-trials estimation by
applying greedy matching of the topographies in the previously
described fashion. As a measure of the goodness of match, the
coefficient cm was again computed according to (19). The ran-
domization and the matching were performed 100 times to get
a histogram for the cm values.

2) Comparing the BSS Methods Using Source Lo-
calization: Evaluating the utility of different BSS methods in
source localization using measured data is difficult because the
true locations of the underlying components are not known accu-

Fig. 4. Merging simulated data originating from five dipoles with mea-
sured TMS–EEG data. (a) Dipole locations and waveforms in one trial
(colors correspond to each other). (b) Resulting simulated data trial (left)
and the combination of the measured and the simulated EEG (right) with
the background EEG level of 13.

rately. To make this evaluation in a realistic manner, we formed
TMS–EEG test data by mixing simulated responses with the
measured highly artifactual TEP data. The waveforms of five
components and 167 trials were simulated as described previ-
ously. The topographies were computed based on single dipoles
in a three-layer spherical head model and using the standard-
ized locations of the EEG electrodes [26]. The radii used for
the concentric spheres were 81 mm (inner skull), 85 mm (outer
skull), and 88 mm (scalp). The skull conductivity was set 1/100
of that of the skin and the brain tissues. The locations and the
waveforms of the dipoles as well as the resulting mixed data
containing both simulated and measured background EEG are
shown in Fig. 4. We used (18) to compute the noise level, now
referred to as the background EEG level, by setting the mea-
sured TEP signal, containing noise, artifacts, and hidden neural
components, as ε.

The estimated topographies were paired with the simulated
ones by greedy matching, whereafter single-dipole fitting was
applied to the matched estimated topographies. We used the
same spherical head model for both the simulation and the
source localization. This “inverse crime” was allowed to guar-
antee zero localization error if the topography was perfectly
uncovered by the used BSS method. Therefore, the measured
error was solely due to any bias in the BSS solution. The NAC
was set as the number of estimated topographies (out of five)
having the dipole localization error of less than 0.5 cm. Due to
the stochastic nature of the used BSS algorithms, the estimations
were run 20 times over which the averaged NAC values were
computed, at each chosen background EEG level separately.

III. RESULTS

A. Simulation Results

Out of the compared BSS methods, MUCA with FFDiag and
J-di yielded the most accurate BSS results at all noise levels, as
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Fig. 5. NAC as a function of the noise level. (a) Comparison between
the BSS methods. (b) Comparison between the AJD methods when ap-
plying MUCA to the filtered MCMs. The notation “+F” stands for filtering.

Fig. 6. Comparison between four different sets of target matrices for
AJD: (1) MCMs and MACMs both filtered, (2) filtered MCMs only, (3)
filtered MCMs and non-filtered MACMs, and (4) filtered MACMs.

shown in Fig. 5. The filtered MCMs could be used by MUCA
with ACDC, FFDiag, and J-di, but not by the other methods
[see Fig. 5(b)]. In the noiseless case, the filtering did not af-
fect the results, but it became increasingly effective with larger
noise levels. At NL = 1, MUCA with FFDiag/J-di applied to
the filtered MCMs was able to uncover 14 components, whereas
the other tested methods successfully found about 4–7 compo-
nents. Apart from MUCA, the best-performing BSS methods
were Block EFICA and FastICA-ns, which we use in the fol-
lowing comparisons along with MUCA.

All of the tested methods were suitable for nonstationary data.
For demonstration, we computed the NAC values in the same
simulation setting with SOBI and FastICA (in its usual form),
which are both popular in EEG analysis. On average, SOBI was
able to find only 4.0 and FastICA 5.1 components even when

Fig. 7. Estimation accuracy with different numbers of components. The
notation “+F” stands for filtering.

Fig. 8. Estimation accuracy as a function of the number of trials. The
notation “+F” stands for filtering.

there was no measurement noise (NL = 0). This illustrates how
the results deteriorate when using BSS methods designed for
stationary data.

A similar comparison was made with autocovariance ma-
trices. Including both MACMs and MCMs as target matrices
for AJD (FFDiag) tended to give a minor improvement in the
estimation accuracy compared to using the MCMs only. How-
ever, the results varied depending on the selected times lags. An
example of the results is shown in Fig. 6, where the selected
time lags were 20, 35, and 50. The filtered MACMs provided
more accurate estimation as compared to using the nonfiltered
MACMs.

MUCA with J-di and FFDiag performed better than the other
compared methods when varying the number of the simulated
components and trials, as depicted in Figs. 7 and 8, respectively.
The MUCA results, with FFDiag and J-di, started to get worse
when the number of trials decreased below 150 (see Fig. 8).
Increasing the number of trials above 150 did not have a notable
effect on the NAC of these methods. Overall, increasing the
number of trials had a positive influence on the FastICA-ns and
Block EFICA performances, although not as significant as with
the other methods.

Increasing the condition number of the simulated mixing ma-
trix worsened the estimation accuracy of all the tested algo-
rithms, MUCA finding the components most accurately (see
Fig. 9). When the condition number was one, MUCA found all
components even at the presence of noise (NL = 1), whereas
the other BSS methods found about 9 components out of 20.
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Fig. 9. Estimation accuracy at several condition numbers of the mixing
matrix. The notation “+F” stands for filtering.

Fig. 10. Distributions of the goodness of match values, cm , between
the MUCA- and the ICA-estimated topographies.

B. Feasibility Results of the BSS Methods

The histograms of all the cm values describing the similarity
of the ICA and the MUCA estimates are illustrated in Fig. 10.
The higher cm values are more frequent than the lower ones,
indicating the presence of several hidden sources which both
MUCA and ICA can find. Using the S1 data, 23 components
were estimated, out of which 17 had cm > 0.8. With the S2 data,
14 out of 20 components had cm > 0.8. The topographies and
the waveforms of these components are illustrated in Appendix
B. For both subjects, many of the topographies obtained by both
ICA and MUCA appeared remarkably similar.

Comparing the time-courses shows that most of the latency es-
timates by ICA and MUCA fall close to each other (see Fig. 11).
With the S1 data, the mean differences between the estimated
latencies (by ICA and MUCA) were 2 and 1 ms for the averaged
and the variance waveforms, respectively. For S2, these num-
bers were 3 and 5 ms. The standard deviations of the differences
were 9 (S1) and 8 ms (S2) for the averaged waveforms, and 19
(S1) and 28 ms (S2) for the variance waveforms.

The stability of the estimated topographies was evaluated by
taking half of the trials into account and comparing the results
with the all-trials results. The histograms gathering the cm values
of 100 test comparisons are shown in Fig. 12. In the S1 data,
there were more trials; the histogram has more counts close to
cm = 1. The mode is 0.93 and the mean is 0.85; 95% of the
samples exceed 0.62. With the S2 data, the mode of cm is 0.87,
the mean is 0.80, and the tail away from 1 is longer; 95% of the
values exceed 0.55.

Fig. 11. Comparison of the latencies of the deflections in the average
and variance waveforms estimated by MUCA and ICA.

Fig. 12. Distributions of the goodness of match values, cm , when half
of the trials were randomized for MUCA 100 times. The mixing matrices
were compared with the topographies obtained from the all-trials MUCA
estimation.

Fig. 13. Results of BSS applied to the TMS-evoked EEG data. NAC
was the number of estimated components whose corresponding dipole
localization errors were less than 0.5 cm. The notation “+F” stands for
filtering.

C. Source Localization Results Based on the BSS
Methods

Five simulated components were inserted in the TMS-evoked
EEG as explained in Section II-C. MUCA, Block EFICA, and
FastICA-ns were then used to estimate 30 components, among
which the ones corresponding to the simulated dipoles were
identified. MUCA with FFDiag and J-di applied to the filtered
MCMs found the components most accurately, as shown in
Fig. 13. At the background EEG levels of 7–13, NAC exceeded
4, decreasing rapidly at higher background EEG levels.
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Fig. 14. Above the solid line: the best-matching MUCA- and ICA-estimated topographies (cm > 0.8) and the corresponding waveforms from the
subject S1. The components are shown in three sections separated by dashed lines. Each section has four columns containing (from left to right) the
MUCA-estimated topographies, the ICA-estimated topographies, the averaged time-courses, and the variance time-courses. Each row corresponds
to one pair of matched components. In the waveform illustrations, blue indicates MUCA and red indicates ICA. The time interval of the waveforms
is 10...120 ms, and the vertical scales are arbitrary. For visualization purposes, the time-courses have been bandpass filtered between 0.5 and 40
Hz and scaled to have unit norms. The warm and the cold colors in the topographies present positive and negative values, respectively. Below the
solid line: The results from S2 are displayed as above.

IV. DISCUSSION

The accuracy of MUCA as compared to the other BSS meth-
ods is possibly due to the simple underlying assumptions and the
possibility to remove noise by filtering the covariance matrices,
which makes AJD more robust to noisy data. Measured multi-
trial responses tend to have high noise level, and it is important
to use efficient noise reduction. At the same time, one needs to
be aware that the techniques that change the time-domain infor-
mation of the data may also interfere with the required uncor-
relatedness property. However, filtering the covariance matrices
preserves this property. It is also noteworthy that MUCA does
not require whitening, which is beneficial since the accuracy of
whitening decreases with noisy data.

MUCA was proven tolerant to high TMS-evoked artifacts.
This is partly because the trial-to-trial variability of these arti-
facts is relatively small although the averaged artifacts tend to
be large. As the averaged response is subtracted from the trials
in computing MCMs, only the intertrial variability is used by
MUCA. This sort of measured data also tend to contain outlier
signals, to which AJD-based BSS is known to be robust [8]. As
indicated by the results, the robustness increases if the number
of trials is high, preferably over 150.

Since the estimation of ill-conditioned mixing matrices is in-
accurate, it would be useful to assess and/or reduce the condition
number of the mixing matrix. When using PCA to compress the
data dimensionality, the condition number of the estimated mix-
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ing matrix can be computed as the ratio of the largest and the
lowest selected eigenvalues. However, this is a highly heuristic
approach, and it is usually difficult, or even impossible, only on
the basis of the measured data to find the true condition number.
If the sources, however, are all sufficiently strong and not very
close to each other, the condition number of mixing matrix is
generally not very high. If the mixing matrix is ill-conditioned
due to large artifacts, one may use the suppression techniques
suggested in [12] to improve the accuracy of the estimated to-
pographies for source localization.

It is notable that stationary components cannot be found by
MUCA. Stimulus-independent neural or artifact activity, such
as eye blinks, is stationary. Therefore, we suggest that, prior to
applying MUCA, one removes randomly occurring artifacts by
some other form of BSS, like ICA [35].

Adding MACMs for AJD might enhance the BSS perfor-
mance if the time lags could be chosen so that the noise would
have close-to-zero autocovariance matrices and the hidden com-
ponents diagonal ones. In practice, utilizing the MACMs proved
difficult since, even with the simulated data having noiseless
MACMs, the results improved only slightly as compared to
MUCA. In measured data, the noise has autocorrelation proper-
ties, leading to noisy MACMs, which makes the BSS task more
difficult.

Based only on the cross-validation results between MUCA
and ICA, we cannot judge whether MUCA or ICA estimation
was superior. However, the comparisons are an important fea-
sibility test since they showed that these two methods, which
are based on very different algorithms but similar assumptions,
were capable of finding many highly alike components within
the same SEP data. These findings suggest that evoked data con-
tain momentary-uncorrelated components, many of which also
appear independent.

BSS can also be based on some other property of the com-
ponents than mutual independence or uncorrelatedness, such as
sparseness in the time domain [19]. Generally, when using any
BSS approach to evoked data, one should consider taking the
nonstationarity of the data into account to improve the accu-
racy of the estimation. For example, in addition to sparseness,
the components could be given an additional constraint of hav-
ing similar latencies of maximum/minimum amplitude over the
trials.

V. CONCLUSION

Event-related responses should be analyzed by methods that
are designed for nonstationary data. All the methodologies pre-
sented in this work are specifically tailored for nonstationary
event-related responses, which yield better estimates for the
components than methods designed for stationary data.

MUCA is a novel method tailored for finding uncorrelated
components from event-related multitrial EEG or MEG data.
As compared to several other BSS methods, MUCA was shown
more accurate at the presence of noise and artifacts.

The cross-validation results between ICA and MUCA support
the idea that the evoked responses contain uncorrelated and
independent processes, indicating that correctly applied BSS is
a meaningful analysis tool with these data.

APPENDIX A
OUTLINE OF THE SOUND ALGORITHM

Here, we used the data-driven version of SOUND [24], based
on least-squares estimation, to remove noise that is uncorrelated
over channels or time. n samples of m-variate data are collected
into an (m × n) matrix Y. The sample correlation matrix RY

of Y is used for estimating the noiseless data.
We use the notation ki = [1, . . . , i − 1, i + 1, . . . ,m] for

building an index vector. The estimate for each noiseless data
matrix element is then obtained by

Ŷ(i, j) = RY (i,ki)RY (ki ,ki)−1Y(ki , j) . (20)

For temporal filtering of one channel ic at a time, we set Y(:
, j) = X(ic , :, j), j = 1, . . . , Ntr. Now, applying (20) removes
noise that is uncorrelated over time instants. Second, for spatial
filtering at a time index it , Y(:, j) = X(:, it , j), j = 1, . . . , Ntr,
after which (20) removes the part of the signal (noise) that is
uncorrelated over the channels.

APPENDIX B
ILLUSTRATIONS OF THE TOPOGRAPHIES AND THE WAVEFORMS

ESTIMATED FROM THE MEASURED SEP DATA

In Fig. 14, we illustrate the best-matching components esti-
mated by ICA and MUCA based on the somatosensory evoked
potentials of subjects S1 and S2.
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