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In the vast majority of electrophysiological studies on cognition, participants are only measured once during a
single experimental session. The dearth of studies on test-retest reliability in magnetoencephalography (MEG)
within and across experimental sessions is a preventing factor for longitudinal designs, imaging genetics studies,
and clinical applications. From the recorded signals, it is not straightforward to draw robust and steady indices of
brain activity that could directly be used in exploring behavioral effects or genetic associations. To study the var-
iations inmarkers associatedwith cognitive functions, we extracted three event-relatedfield (ERF) features from
time-locked global field power (GFP) epochs using MEGwhile participants were performing a numerical N-back
task in four consecutive measurements conducted during two different days separated by two weeks.
We demonstrate that the latency of the M170, a neural correlate associated with cognitive functions such as
working memory, was a stable parameter and did not show significant variations over time. In addition, the
M170 peak amplitude and the mean amplitude of late positive component (LPP) also expressed moderate-to-
strong reliability across multiple measures over time over many sensor spaces and between participants. The
M170 amplitude varied more significantly between the measurements in some conditions but showed consis-
tency over the participants over time. In addition we demonstrated significant correlation with the M170 and
LPP parameters and cognitive load. The results are in line with the literature showing less within-subject fluctu-
ation for the latency parameters andmore consistency in between-subject comparisons for amplitude based fea-
tures. The within-subject consistency was apparent also with longer delays between the measurements. We
suggest that with a few limitations the ERF features show sufficient reliability and stability for longitudinal re-
search designs and clinical applications for cognitive functions in single as well as cross-subject designs.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Electromagnetic correlates of cognitive functions in the human brain
form an intriguing topic, which has been studied abundantly for de-
cades [1]. In electrophysiology, cognitive processes are traditionally
studied with long-latency neural responses of the event-related
potential (ERP), or field (ERF) that are extracted from the continuous
electroencephalograph (EEG) or magnetoencephalograph (MEG), re-
spectively, by signal averaging. Typically, the ERPs or ERFs, with associ-
ations to cognition, peak several hundreds of milliseconds after the
onset of an event and originate in associative cortical areas. The use of
MEG as a method can be preferable in some situations since it reveals
activitywith high spatial and temporal precision to provide information
on the overall stability in neural activation during comprehensive
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cognitive tasks [2, 3]. Unraveling the neural basis of human information
processing is intriguing and potentially beneficial task since the longer-
latency ERP components have shown some promise as tools in clinical
applications [4, 5]. The importance of electromagnetic measures relies
on their extreme accuracy in time, which enables a deep understanding
of the temporal succession of neural events. In contrast, the temporal
approximation of metabolic measures, such as those provided by func-
tionalmagnetic resonance imaging (fMRI), typically average over sever-
al seconds, skipping over the fast, local neural events and evidencing
only the dominant, systemic ones [6].

Variations in recorded brain responses result partially from noise
and partially from true and persistent inter-individual differences,
e.g., endophenotypes. Endophenotypes are specific traits that aremean-
ingfully associated with a disorder of interest, a type of behaviour or ex-
posure to a specific environment, and are an interesting source of
information for brain research to tackle [7]. Since the N-back has
shown promise in linking genetic traits to cognitive performance [8],
we chose to use the task in our test-retest study on ERF reliability
since it is cognitively a much more demanding task than the ones
used previously in studies of ERP/ERF replicability [9]. Some properties
in evoked brain activations are successfully linked to genome and
gene expression [10, 11]. However, due to the interaction and variations
in environmental factors, internal conditions in participants' physiolog-
ical state, as well as task dependent variables, the results of electrophys-
iological measurements on higher cognitive activations are difficult to
interpret [12, 13]. The lack of studies concentrating on test-retest reli-
ability and replicability of electrophysiological correlates of working
memory is a serious concern and partly preventing eletrophysiological
research on the topic.

Using PubMed searches with keywords ‘replicability’ and ‘test-re-
test’, and restricting the results to studies with MEG, we found 16 stud-
ies of which none considered cognitive task-related activation. In
addition, one reliability study by [14] on graph metrics stability was
found outside the PubMed search. The study reports greater stability
in connections between cortical areas in cognitively demanding situa-
tions compared to the resting state. Within EEG research, test-retest
studies on different features of evoked potentials has a long history
reaching back three decades. A large number of studies on the test-
retest reliability in EEG inspect the mismatch negativity (MMN) [15,
16, 17] reporting fair stability in early ERP components, both at individ-
ual and at interindividual level. And many of the studies focus also on
latter components and error-related negativity in EEG [18, 19, 20, 21].
These studies have found stability in P3 component latency over
weeks, however reporting earlier components as more stable over lon-
ger period of time. The studies regarding error-related features report
fair stability in interindividual tests but suggest high number of trials.
MEG studieswith reliability as theirmain researchquestion concentrate
mainly on early sensory responses, e.g., on the auditory N1 response
[22], and on somatosensory evoked fields (SEF) [23]. These studies sug-
gest equal stability for both EEG and MEG signals. We found only three
studies focusing on the replicability of evoked responses during a de-
manding cognitive task [14, 24, 25]. Huffmeijer et al. [24] recommend
more trials to be used for latter components in ERPswhile the early sen-
sory components can be studied with fewer trials. While [25] reports
stronger replicability to test-retest amplitudes compared to split-half
amplitudes of various ERP components.

Here, we adopted a basic visually presented N-back paradigm as a
cognitive task. N-back is a classic working memory test and has been
used in electrophysiological studies as a cognitive task for several rea-
sons [1]. Performing an N-back task requires monitoring, updating,
andmanipulating the information flow on-line and is assumed to occu-
py numerous key processes within working memory and other execu-
tive functions [26]. N-back is abundantly used and reviewed in the
field of neuroimaging and imaging genetics, mainly in fMRI [27, 28],
and has also been used in a replicability study of fMRI responses [29].
Thus, it is well suited for studying stability of neural activations.
Recently, the task has also received publicity within the field of cogni-
tive training, advocating its use as a cognitive performance measure
[30].

We aimed to explore the source of variability between participants
and to study the stability of repeated measures within participants. In
this repeated-measures cognitive MEG paradigm, we investigated the
effect of daily variations within healthy participants performing cogni-
tively demanding tasks against the instrument derived and random
noise sources. To explore the traces of individual ERFs we computed
the global field power (GFP) for the MEG data. In MEG, GFP reduces
the dimensions of the multisensory electrophysiological data and yet
serves as an excellent quantifier for neural activity. GFP is a global and
well-established quantifier of the overall neuronal field strength. It is
based on spatial standard deviation, and quantifies the amount of activ-
ity of all neuronal sources at a given time instant to its largest possible
extent. Hence, it serves as an excellent summation to study traces of
event relatedfields (ERF) [31, 32]. It is also ameasurewith very fewpre-
sumptions. Unlikemany techniques such as sourcemodelling, GFP does
not require a priori assumptions on the studied brain responses,
allowing amore direct and easily replicable estimate of total brain activ-
ity. Thus, GFP is a good quantifier of MEG activity also when large
amounts of recordings need to be analyzed in automated paradigms
such as in, e.g., imaging genetics.

In particular, we focused on the ERF component termed M170,
peaking at around 150–200 ms from event onset, and reflecting atten-
tion [33] and cognitive processes such as face recognition [34], and com-
plex lexical decisions [35, 36]. The loci of M170 neural generators
converge to left or right fusiform gyrus, depending on the task [37].
We also examined the long-latency ERF component labeled late positive
potential (LPP). This somewhat controversial ERF feature is elicited dur-
ing evaluative classification of various stimuli [38, 39]. For extracting the
LPP, we measured the difference between the target and non-target
stimuli in a post-response time window. This modulation of ERF
strength begins approximately 300–400 ms after stimulus onset and
lasts several hundreds of milliseconds [40]. Its neural generators have
been identified in lateral to frontal regions for cognitive tasks [41]. De-
spite its controversial status, LPP seems to, e.g., consistently reflect the
awareness of an error [42, 43].

2. Methods

2.1. Protocol, participants, and questionnaires

Seven healthy right-handed participants (2 males, mean(sd) age
26(5.8) years)were recorded in four replicatedmeasurements. Subjects
were recruited via mailing lists and compensated for the time used
(equivalent to ca. 24€). The study consisted of four separate sessions
for each participant. The measurements were conducted during two
days separated by a period of approximately two weeks so that each
measurement day included two repeated measurements. Each mea-
surement consisted of an N-back task and two other cognitive tasks
that lasted altogether for approximately an hour. Thus each session
consisted of 2 h for the tasks, and an additional hour for preparations
and questionnaires about vigilance, performance, and mood (KSS
(Karolinska Sleepiness Scale), NASA-TLX (NASA Task Load Index), and
POMS (Profile of Mood States) [44, 45, 46] respectively). Here we ana-
lyze the test-retest reliability in all of the concluding 28 N-back blocks
(7 subjects, 4 blocks each), resulting in over 500 min of recorded MEG
data.

We aimed at inducing some natural variation in the mental state of
the participants during the N-back measurements. For this reason, the
two session days differed in the type of pause the participants had be-
tween the two measurement blocks (see Fig. 1): one break was made
pleasant and the other one unpleasant. Other parameters such as caf-
feine consumption and the time of the day were controlled. A common
workload score was evaluated from NASA-TLX questionnaires. Mood



Fig. 1. Schema of the session.
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and vigilancewere evaluated by questionnaires (POMS and KSS, respec-
tively). We analyzed the POMS by computing total mood disturbance
scores. The sessionsweremade different to explore the stability in elec-
trophysiological activity under varying environmental and internal
states. The pause types were controlled to differ in solely enjoyability:
during the pleasant pause (type 1), the participants listened to their
favourite music and savored a pleasant snack; during the unpleasant
pause (type 2), participants were exposed to a recording of street and
construction yard noise and consumed an unpleasant snack. The
sound environments were controlled for mean loudness and the snacks
for calories. The studywas granted ethical approval by the reviewboard
of the Hospital District of Helsinki and Uusimaa, Finland. The experi-
ment was carefully explained to the participants, and written consent
was obtained before attending the first session. The study protocol
followed the Declaration of Helsinki.
2.2. N-back task

We used a basic N-back task with numerical stimuli. The task was
presented with Presentation software (Neurobevaioral Systems, Inc.,
Version 14.9). The stimuli were bright white numbers on a black back-
ground. They were presented at the center of the participants visual
field occupying ca. 1.7 degree vertical visual angle on a screen in the
measurement chamber. The participants monitored a stimulus train of
180 consecutive trials for each memory load level (0-back, 1-back, and
2-back, see below). Prior to presenting the stimulus, a fixation cross in
the middle of the screen was presented. The number stimulus was vis-
ible for 1500 ms and thereafter the fixation cross for 500 ms, stimulus
onset asynchrony thus being 2000ms. A button press response between
300–1950ms after stimulus onsetwas accepted for the analysis. A tenth
of the stimuli was distracted with a noise distractor beginning 300–
900 ms after the onset of the stimulus presentation. These stimuli
were used to distract the participant from the N-back task. Those events
when a distractor sound was present are analyzed elsewhere and were
discarded from the analysis of performance and all brain measures.

The paradigm had three levels of memory load; in the 0-back condi-
tion, participants were looking for a predetermined number, whereas in
the 1-back and 2-back the task was to determine whether the stimulus
matched the previous stimulus, or the one before that, respectively. The
stimulus trains were predetermined pseudo-random lists. One third of
the stimuli corresponded to the task, resulting in 60 match and 120
non-match trials in each of the load levels. The participants took part
in two sessions and conducted the task twice per a session, resulting
in 1944 (0.9 ∗ 180 trials, 3 levels, 2 blocks, 2 sessions) non-distracted tri-
als for each participant.

2.3. Response design

The participants used their thumbs to respond with an in-house
device connected to the measurement system using optic fiber tech-
nology. In the N-back paradigm, a forced-choice response between
match and non-match was applied. The right thumb was used for
matching stimuli and the left for non-matching stimuli. The response
was indicated by lifting the corresponding thumb from the hand-held
device.

Responses were categorized according to the task load and the stim-
ulus type (match or non-match). Only the correct responses were in-
cluded in the further analysis. We used the median response time as a
behavioral metric. The median was chosen despite a predefined time
window for response, since in a taskwith varying requirements, theme-
dian gives the most stable results [47].

2.4. MEG recordings

MEG recordings were carried out in the BioMag laboratory of the
Helsinki University Central Hospital with a 306-channel Elekta
Neuromag Vector View MEG device placed in a three-layer magnetic
shielded room (Euroshield, Eura, Finland). The Elekta Neuromag Vector
View is comprised of 204 orthogonal planar gradiometers and 102mag-
netometers in a head-shaped helmet. During the recordings, the partic-
ipants were sitting in a comfortable position and their heads were
covered by the MEG sensor array. In addition to the MEG channels,
EEG (64 channels) and electro-oculography (EOG), stimulus triggers,
and digital timing signals for synchronization were recorded simulta-
neously into the data file while the participants were performing the
N-back task. These signals were used for artefact detection, time syn-
chronization, and noise control. The position of the participant's head
with respect to the sensor helmet was determined with help of four
head-position-indicator (HPI) coils. Participant's head was positioned
similarly in the beginning of each measurement block. Data from all
MEG channels were band-pass filtered with 0.1–170 Hz filter, sampled
at 500 Hz and stored locally.

2.5. Data analysis

The MEG data was analyzed using Martinos MNE [48], Brainstorm
[49], MATLAB (8.3, MathWorks), and R language and environment for
statistical computing [50]. Preprocessing was conducted with MNE
and Brainstorm. For the statistical analysis, the data was exported to R
environment.

First, the Martinos MNE software was used to filter with a 1–20 Hz
band-pass filter, which is a typical filter for cognitive MEG studies. The
effects of filtering on signal to noise ratio (SNR) are assessed in
Appendix A. Thereafter, eye blink artefacts were attenuated in Brain-
storm with signal space projection (SSP) by visually inspecting and re-
moving the corresponding SSP component. The data were then
epoched according to stimulus and response triggers. The epochs
started 150 ms before and continued 1000 ms after the onset of the
stimulus. Pre-stimulus interval was used for determining the baseline.
In addition, epochs with signal amplitudes (peak-to-peak) exceeding
3000 fT or fT/m were discarded.

Global field power (GFP) for each preprocessed trial epochwas sub-
sequently computed in MATLAB, as defined by [51, 52]. GFP was exam-
ined in a space including all MEG sensors as well as in three separate



Table 1
Mean of the response time medians (sd) in measurements over all participants. In
milliseconds.

Task load 1st session 2nd session

1st block 2nd block 1st block 2nd block

0-Back 426(86) 430(91) 431(122) 430(97)
1-Back 486(98) 451(95) 503(95) 487(112)
2-Back 594(156) 531(134) 640(209) 564(180)
Diff. 2-, 0-back 173(99) 111(83) 216(132) 138(122)
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sub-spaces, named right lateral frontal (RLF), left lateral frontal (LLF),
and occipital, denoting partial selections of included sensors on the
frontal hemispheres and the occipital lobe. GFP of all epochs were sub-
sequently exported to R statistical software. In R, the GFP time epochs
were baseline corrected and averaged for ERF feature extraction. Instead
of one average we computed sample of bootstrapped averages to illus-
trate also the uncertainty of individual ERF average. This way we were
able to observe the individual differences over different measurements.
The ERF components extracted for test-retest analysis were an early
peak, the M170, and a late modulation in signal (peaking at 600–
900 ms).

TheM170 peakswere determined using local polynomial regression
fitting (loess) in an automated algorithm. The method reduces the
noise-derived variation in the signals [53] and allows an automatic
peak detection. The fitting was applied to a signal average of each task
load (0-back, 1-back, and 2-back) and response (match and non-
match) combination separately. The parameters for the fitting algo-
rithm were adjusted to result in an R2 fit of 0.9 for every signal. The
peaks for M170 amplitude and latency were determined as being the
next peak after 100ms and before 250ms post-stimulus by a simple al-
gorithm searching for locally highest values on the slopes of fitted sig-
nal. The LPP was defined as a signal amplitude average between 600
and 900 ms post-stimulus. Three key features, the M170 peak ampli-
tudes and latencies and the LPPs mean amplitude, were subjected to
the statistical analysis.

2.6. Statistical analysis

The behavioral results were analyzed according to the response
times in the three task loads and the fourmeasurement blocks for learn-
ing effects using general linear models (GLMs) and ANOVA. The three
extracted ERF features (M170 amplitude, latency, and LPP mean ampli-
tude) were analyzed using GLMs to examine differences between par-
ticipants (‘subject’, 7 levels) and the measurements (‘block’ & ‘session’,
4 levels) within participants.

Themeasurementswere compared in a pair-wisemanner to explore
the main effects (e.g., for learning) between measurements within the
sessions (‘block’), between latter measurements of each sessions,
i.e., after different pause types and the measurements between the ses-
sion days. These three independent variables were used to test the var-
iation differences in all the extracted ERF features. Participant and task
load were used as the parameters in our statistical models to test the
interactions.

For between participant consistency, intraclass correlation coeffi-
cients (ICC) (see [54] for details) were computed for each task load
(0-, 1-, and 2-back), response (match, non-match), and measurement
(‘block’ & ‘session’). ICC was calculated as defined by [55]. When using
reliability analysis such as ICC instead of simple correlation coefficient
the difference in mean of the ERF features between participants is uti-
lized in the analysis. It constitutes more rigorous analysis of test-retest
reliability than the zero order correlation coefficient.

To confirm the task dependence of the extracted electrophysiologi-
cal features, we analyzed the effect of response time (RT) on the ERF fea-
tures by computing the regression for each task load-response-subject
mean against median response times in the N-back task. We also exam-
ined the M170 and LPP differences between the slow performance and
fast performance participants (RT limit 500 ms in 2-back condition)
within each task load to further verify that the used features are task
related.

3. Results

3.1. Questionnaires

The questionnaire data did not indicate a significant effect of
environmental conditions on mood or vigilance. The KSS data
showed that vigilance was stable within participants within the
visits (χ2-test for within session ratings). The subjective stress in-
duced by the tasks (NASA-TLX) did not show trends within ses-
sions nor did it express correlation with the pause type (χ2-test
between sessions). Similarly, according to ANOVA the total mood
disturbance was stable across both sessions and did not show var-
iation in questionnaires filled after different types of pauses. ANOVA
showed more variation in the mood across the two counter-balancing
groups (F=4.01 ,p=0.06) than across the pause type. The workload
scores did not vary significantly between session either. In sum, changes
in the environmental factors, i.e., the pause type did not affect perfor-
mance, mood state, or alertness.

3.2. Behavioral

We found that for lower task load levels over 90% of the responses
were correct and were thus qualified for further analysis. ANOVA (F=
4.153 ,pb0.02) demonstrated significant differences in accuracy
between load levels but multiple comparisons (Tukey's range test)
revealed that accuracy varied significantly only between 2-back and 0-
back conditions.When also the effect of participant is taken into account
the difference between 2-back and 1-back conditions became signifi-
cant. The behavioral data showed significant differences in response
times between the three task load levels, i.e., in 0-back versus 1-back
and 2-back task loads (ANOVA, F=28.99,pb0.001). This was true also
for each task load pair as revealed bymultiple comparisons test. Repeat-
edmeasures ANOVA showed no difference between the performance of
the first test session and the second session, F=1.12,ns. (see Table 1).
This indicates no significant improvement in performance and thus no
learning effect. There was also no statistically significant difference be-
tween the latter test blocks of the sessions and the different type of
pause (ANOVA, F=0.525,ns.). The ERF features showed similar
disordinal variations in pairwise comparisons.

3.3. MEG data

After artefact rejection, 94.6% of the correct trials were included to
the subsequent analyses.We adjusted thefittingparameters of the algo-
rithm reported in Section 2.5 to obtain 0.9 or higher values for multiple
R2 tests for the fitting curves. The residuals of the fitted polynomials
were normally distributed. Some examples of the ERFs with the esti-
mated M170 peaks and smoothing curves are shown in Fig. 2, which
also illustrates the variation in the GFP averages within-subject for
one task load, in single block, and one stimulus type.

3.3.1. ANOVA and ICC results
Our analyses with ANOVA resulted (Tables 2, 3, 4) significant differ-

ences in all parameters for some of the sensor selections when investi-
gating the pairwise main effects. The measurements were divided into
pairs according to different pause types, sessions, and measurement
blocks within a session.

Overall, occipital sensor selection demonstrated more significant
variations across the measurements than the other sensor selections.
For all the analyzed features, least variation was found in M170 latency



Fig. 2. Examples of fitting on averaged GFP epochs by subject, cognitive load, and response (target/non-target). Each signal illustrate the mean for a single block, the local polynomial
regression fitting (loess), and the M170 peak defined by the automatic algorithm. Individual block means are overlaid in the figures.
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and most in M170 amplitude. The ICC analysis on the other hand
showed significant reliability for the M170 amplitude (1-back and 2-
back ICCsN0.44 ,psb0.001) and excellent reliability for LPP (1-back
Table 2
GLM main effect of session number.

Sensor block Statistic M170 ampl. M170 latency LPP ampl.

All sensors Df 1 1 1
F-value 0.0214 0.0003 5.3006
p-Value ns. ns. 0.02282

LLF sensors Df 1 1 1
F-value 2.0281 09,638 0.0530
p-value ns. ns. ns.

RLF sensors Df 1 1 1
F-value 5.9904 0.2269 0.8976
p-Value 0.01565 ns. ns.

Occipital sensors Df 1 1 1
F-value 2.8876 2.9762 0.1284
p-Value 0.09153 0.08675 ns.
and 2-back ICCsN0.83,psb0.001) in the conditions with higher cogni-
tive load when all the sensors were included into the analysis. The full
ICC results can be found in Appendix A.
Table 3
GLM main effect of pause type.

Sensor block Statistic M170 ampl. M170 latency LPP ampl.

All sensors Df 1 1 1
F-value 0.1031 2.4706 0.0047
p-Value ns. ns. ns.

LLF sensors Df 1 1 1
F-value 1.9158 0.1064 4.7062
p-Value ns. ns. 0.03178

RLF sensors Df 1 1 1
F-value 0.0029 0.0057 0.479
p-Value ns. ns. ns.

Occipital sensors Df 1 1 1
F-value 5.0772 3.9286 0.0258
p-Value 0.02583 0.04947 ns.



Table 4
GLM main effect between blocks (before and after pause).

Sensor block Statistic M170 ampl. M170 latency LPP ampl.

All sensors Df 1 1 1
F-value 8.6184 0.0465 0.2552
p-Value 0.003904 ns. ns.

LLF sensors Df 1 1 1
F-value 0.3480 0.941 0.0816
p-Value ns. ns. ns.

RLF sensors Df 1 1 1
F-value 2.0149 1.1284 1.1904
p-Value ns. ns. ns.

Occipital sensors Df 1 1 1
F-value 3.1796 0.3294 0.3911
p-Value 0.07678 ns. ns.

Table 6
GLM interaction effects of subject and session type.

Sensor block Statistic M170 ampl. M170 latency LPP ampl.

All sensors Df 6 6 6
F-value 3.6499 1.3226 2.7212
p-Value 00,039 ns. 0.0225

LLF sensors Df 6 6 6
F-value 2.2002 1.1337 3.5082
p-Value 0.0580 ns. 0.0052

RLF sensors Df 6 6 6
F-value 4.7178 0.5957 2.5700
p-Value 0.0005 ns. 0.0297

Occipital sensors Df 6 6 6
F-value 8.8782 3.2789 1.9644
p-Value 0.0001 0.0080 0.0880
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According to the ANOVA, the within-session variation (between
blocks) showed no significant effects for M170 latency or the LPP.
M170 amplitude instead varied significantly even within-session (F=
8.61 ,p=0.004). The counter-balanced between day variation
(Table 3) demonstrates significant main effects for all the features in
some sensor selections (M170 amplitude in occipital sensors F=
5.08,p=0.03, M170 latency in occipital sensors F=3.93,p=0.05, and
mean LPP amplitude in LLF sensors F=4.71,p=0.03).

Tables 5, 6, and 7 show that the interaction effect of the subject
and the block pairs correspond to the main effect evaluation. Again
the LPP and M170 amplitude varied more drastically than the M170
latency. The M170 latency showed an interaction effect only in the
occipital sensor selection. The interaction effects between block
pairs and subjects were, however, disordinal (Fig. 3. Whereas, within
session effects for M170 latency and mean LPP were purely subject
derived. Due to the disordinal interaction, the effects showed in
Tables 5, 6, and 7 cannot be referred as main effects for either mea-
surement block or subject.

The within subject variation was much smaller than between-
subject variation (6.5 vs. 11.7% for the M170 latency, 0.3 vs. 4% for the
M170 amplitude, and 0.5 vs. 2% for LPP) as expected.

The within subject consistency was thereby more prominent in am-
plitude basedmeasures (within variation 0.25 of total variation) than in
latency (within variations 0.5 of total variation).

The ICC analysis expressed increasing trend for correlation with
higher cognitive load. This was evident across the sensor selections
and ERF features. The ICC was most correlated for 1-back task in LPP
in the all sensor space (ICC=0.87,pb0.001). In the conditions 1-back
and 2-back, the ICC ranked ERF parameters as follows, LPP was most
correlated (ICCmin=0.42 ,pb0.001), M170 amplitude second
(ICCmin=0.18,p=0.02), and M170 latency least (ICCminb0,ns.).
Table 5
GLM Interaction effects of subject and session number.

Sensor block Statistic M170 ampl. M170 latency LPP ampl.

All sensors Df 6 6 6
F-value 3.6678 1.8225 1.6374
p-Value 0.0038 ns. ns.

LLF sensors Df 6 6 6
F-value 2.1771 0.9626 4.5237
p-Value 0.0604 ns. 0.0007

RLF sensors Df 6 6 6
F-value 3.4148 0.5522 2.4821
p-Value 0.0062 ns. 0.0349

Occipital sensors Df 6 6 6
F-value 9.4304 3.4809 1.9432
p-Value 0.0001 0.0055 0.0914
3.4. Correlation between MEG and behavioral results

To confirm the dependence of the behavioral data on the ERF fea-
tures we examined if differences between participants were due to
differences in strategy, cognitive abilities, or internal state, and if
they appear in the ERF features. The data provides evidence that
ranking the participants according to performance is reflected in all
of the ERF features. In Fig. 4, the regression (latency change is
N10 ms per response second (pN0.95)) suggests that the ERF fea-
tures are affected by the response times. This is evident when all
the sensors are included in the computation of GFP, as well as if we
only analyze RLF sensors.

Moreover, we divided the participants into two groups, namely
fast and slow performers, to see if the speed in given responses to
the task is shown in the ERF features. We wished to test whether
the differences in the parameters according to response times are
due to biological or strategic distinctions across the participants.
We found significant differences between participants with median
response time above 500 ms and participants whose median re-
sponse times were faster than 500 ms in the 2-back task. The faster
responders had a significantly higher mean LPP amplitude (t-test,
t=3.0 ,df=26,p=0.005 and t=2.8 ,df=27,pb0.009, respectively)
for the 2-back and the 1-back task loads, but not for the 0-back task
load (shown in Fig. 5).

4. Discussion

The primary objective of this study was to examine the replica-
bility and test-retest reliability of evoked field components with as-
sociations to cognitive functions such as working memory in MEG.
GFP was used as a measure for overall event-related activation in
Table 7
GLM interaction effects of subject and block number.

Sensor block Statistic M170 ampl. M170 latency LPP ampl.

All sensors Df 6 6 6
F-value 1.8973 1.0697 1.1090
p-Value 0.0990 ns. ns.

LLF sensors Df 6 6 6
F-value 4.1128 1.7571 1.4041
p-Value 0.0017 ns. ns.

RLF sensors Df 6 6 6
F-value 0.4805 0.5141 1.2651
p-Value ns. ns. ns.

Occipital sensors Df 6 6 6
F-value 2.0722 0.6249 0.1459
p-Value 0.0728 ns. ns.



Fig. 3. Interaction plot between sessionswith different pause types andwithin participant
changes in M170 peak latency and mean LPP amplitude in the right frontal sensor block. Fig. 4. Above: Effect of response time on M170 latency over all sensors. Below: Effect of

response time on mean LPP amplitude in RLF sensor block. Red lines depict the
regression of the measured data and gray lines are regressions for bootstrapped datasets
used for computing the confidence intervals.
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the cerebral cortices, and we found reliable ERF features showing
little test-retest variation across multiple measurements. We also
found that with higher cognitive load the ERF features express
more intraclass correlation between participants. The variation in
M170 latency was least significant in the frontal regions as the
test-retest correlation in LPP was most prominent in the occipital
area.

In most of the research paradigms only one recording is available
from each individual. This yields a great challenge to the estimation
of the contributing sources of intra-individual variability. To study
the dependencies of the intra-individual differences to other factors,
such as genetic or behavioral measures, it is of high importance to
study the reliability of brain responses in a paradigm with multiple
measures per participant, preferably in different moods and across
days [56].

Importantly, our results are in line with earlier studies on stability
of electrophysiological features [24, 14, 57], by demonstrating that
intra-individual stability is high compared to inter-individual variation.
Furthermore, our results also showed greater variability in intra-
individual ERF parameters with longer delay between the measure-
ments. Interestingly this is especially salient for the task load dependent
feature of the M170 latency.



Fig. 5. The effect of group to mean LPP power. Participants divided into groups according
to the median response time in 2-back task (fast b 500 ms b slow).
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In addition, we demonstrated that the selection of the time-
locked ERF metrics needs to be done carefully. For instance the
major fluctuations in occipital area between measurements with
M170 peak latency might appear due to problems in finding proxi-
mate peaks in ERFs. In the partial sensor selections the method for
isolating the peak to represent M170 might be prone to alternations
of head position between measurements and equipment derived
noise. However whole-head GFP is virtually independent of head po-
sitioning and hence more stable parameter than, e.g., dipole models.
Despite the variations in some of the sensor selection results, latency
is a rather stable feature and does not vary significantly between
measurements. Some of the EEG studies on reliability suggest that
for, e.g., N170 type ERPs show adequate to excellent test/reteset re-
liability for amplitude [24]. We found that M170 amplitude corre-
lates over subjects and over the measurements although, it is
fragile to variation between individual measurements. This finding
advocates that M170 is quite a precise parameter over our test pop-
ulation. In addition the LPP correlated greatly between the partici-
pants and had less measure to measure variation than the M170
amplitude.

The stability differences between the extracted ERF features sug-
gest temporal structures in noise distributions. The interesting
signals in MEG are several orders of magnitude smaller than environ-
mental noise [3], and environmental noise is not completely stable;
it changes over time [58]. These changes might cause erroneous in-
terpretations of MEG signals even on averaged ERFs. In our results,
fluctuation is shown as disordinal variation in the interaction effects
in between-day measures and between participants. Random varia-
tion trends suggests that this originates from the state of the
measurement equipment rather than a change in the participants
electrophysiological signals. This can also be assumed by looking
into stability differences between areas. The areas related to working
memory and task execution, as shown by, e.g., [59], displaymore sta-
bility between measurements. The occipital fluctuations in pair-wise
measurement comparisons may derive from weaker peak detection
since the overall stability is better for the peak independent feature,
i.e., LPP. In addition, the constant mood and vigilance states within
different environmental factors and over different visits may have
contributed to the signal stability. Literature suggests that emotional
content may affect to the ERP components widely [60]. Stress also al-
ters the electrophysiology in cognitively demanding tasks in variety
of ERP components [61].

The right frontal sub-division of sensors (RLF), which showed
the least variation in pair-wise comparisons, is proximate to the
cortical areas reported as highly relevant for the N-back task
[27]. This may have affected to the ICC results here since the target
and non-target stimuli might elicit differing responses on this area
[62]. These differences may vary between participants. In addition,
our behavioral results combined with MEG outcome features
imply that the RLF sensors incorporate the most variation due to
response time and current task load. This is supported by findings
that the right-hemispheric frontal lobe is highly involved in task-
related processing [63]. Earlier studies have also shown that the
observed lateralization is related to the use of verbal (alphanu-
merical) stimuli [27]. In general, the partial sensor selection re-
sults suggest that task relevant ERF latencies extracted from
smaller areas show less variability than signal amplitudes and
whole sensor array statistics.

The arguments stated above imply that task-related MEG/ERF anal-
ysis are to be selected with caution when planning a multi-session
study. It also seems sensible to use a task in the experimental paradigm
to assure that participants retain a similar time-dependent cognitive
state in both sessions. This is also shown in earlier studies [14, 57].
Moreover, the engagement of the participants should also be controlled,
e.g., by gamification.

Prior research on regional connectivity suggests that improved per-
formance, i.e., learning, might relate to the emergence of more reliable
brain network configurations [14]. The performance differences
reflected in the ERF features might also be due to effort-related vigi-
lance. However, further study is needed to examine the cognition and
person-related factors behind the group difference in the N-back task.
We found a persistent decrease among slower responders in LPP,
i.e., for the participantswhose behavioral responsewasmore proximate
to the analyzed time segment in the ERF. This suggests that the effect is
not directly response derived, but rather a delayed positivity or negativ-
ity related to performance.

Using more advanced analysis methods would reveal additional
prospects for signal replicability. Comparing replicability between raw
sensor signals and source space models would provide valuable infor-
mation on the effect of advanced analysis techniques on equipment de-
rived noise. In the future, specific ERF source space parameters should
be compared to, e.g., GFP in order to evaluate the signal stability during
different steps in the analysis. Also, our sample size is modest and in-
cluding, e.g., patient groups would reveal more about intra-subject sta-
bility of ERF components.
5. Conclusion

We demonstrated the stability of task-dependent brain re-
sponses in a cognitively demanding MEG experiment. We propose
the features of task related ERFs as appropriate measures of cogni-
tive brain functions in longitudinal designs, such as cross-over
studies or imaging genetic studies. The findings are in line and
well inserted in the already existing literature on test-retest reli-
ability in EEG [24, 25]. The literature suggests that ERP latencies
show reliability in components such as N170. Therefore these fea-
tures qualify as an adequate measures for endophenotype models,
and personality trait research. The late ERF components appear to
be most affected to the attention specific parameters of the task,
and while the signal to noise ratio (SNR) remains limited, i.e., the
number of averaged epochs is high, it is demonstrated to be poten-
tial measure for cognitive activity as well [24]. The cognitive load
should be controlled in the paradigms. Our results reveal the po-
tential in clinical applications and applications utilizing brain de-
rived variables for automated electrophysiological analysis and
computationally extracted parameters, even in sensor signals.
However, the generalization of the results must be investigated
with higher participant count and with clinical populations in fur-
ther studies.
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Appendix A. Filtering

Here's the ICC analysis results in a table and some extra data on sen-
sor selection and filtering results.
Fig. A.6. Examples of the effect of high-pass filtering on different participants, task difficulties, an
high-pass sampling filter, and the red shaded section the deviation in the 1 Hz high-pass filter
The sensor numbers for different sensor selections used in the
article,

Due to the arbitrary (literature based) cutoff frequencies in our data
analysis, we assessed the effect of filtering on replicability. We com-
pared the data of the original sampling filter (0.1 Hz high-pass) to that
of used (1 Hz high-pass) filter, and evaluated the signal to noise ratio
(SNR).

The high pass filtering of data reduced the noise significantly. For ex-
ample, for mean LPP amplitude the noise levels drop to one half in oc-
cipital sensors and below one tenth in the sensors on the left
prefrontal cortex. Fig. A.6 illustrates the reduction of the noise in a few
examples for single participant in single stimulus type in one task load
in one of the sensor blocks.

The channel numbers for the used channel sub-spaces:

• right lateral frontal (RLF): [76:81,109:126,138:150]
• left lateral frontal (LLF): [1:6,9:24,31:48]
• occipital: [187:188,193:198,214:220,235:246]
The full ICC results are found in Table A.8.
d responses. The blue shaded area represents the deviation in the datawith original 0.1 Hz
ed signals.



Table A.8
Intraclass correlation coefficient analysis for all sensor blocks and task loads within each ERF feature.

Sensor Block M170 ampl. F-value (p-value) M170 lat. F-value (p-value) LPP ampl. F-value (p-value)

All sensors 0-Back 0.133 2.2377 (p=0.055) 0.152 2.463 (p=0.037) −0.039 0.695 (p=0.236)
1-Back 0.578 10.738 (pb0.001) 0.296 4.352 (p = 0.002) 0.869⁎ 53.879 (pb0.001)
2-Back 0.445 7.667 (pb0.001) 0.319 4.493 (p=0.001) 0.833⁎ 39.461 (pb0.001)

LLF sensors 0-Back 0.084 1.719 (p=0.13) −0.089 0.366 (p=0.89) −0.131 0.067 (p=0.99)
1-Back 0.175 2.786 (p=0.02) −0.055 0.540 (p=0.74) 0.799⁎ 31.670 (pb0.001)
2-Back 0.487 9.013 (pb0.001) 0.107 2.011 (p=0.08) 0.835⁎ 39.128 (pb0.001)

RLF sensors 0-Back 0.010 1.082 (p=0.38) −0.059 0.508 (p=0.79) 0.008 1.062 (p=0.40)
1-Back 0.241 3.429 (p=0.01) 0.045 1.337 (p=0.27) 0.774⁎ 27.039 (pb0.001)
2-Back 0.178 2.850 (p=0.02) 0.220 3.268 (p=0.009) 0.417 6.550 (pb0.001)

Occipital sensors 0-Back 0.469 8.183 (pb0.001) 0.403 6.323 (pb0.001) 0.058 1.500 (p=0.19)
1-Back 0.783⁎ 31.751 (pb0.001) 0.425 6.362 (pb0.001) 0.866⁎ 58.555 (pb0.001)
2-Back 0.661 13.214 (pb0.001) 0.335 5.950 (pb0.001) 0.768⁎ 24.828 (pb0.001)
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⁎ Higher than 0.7 correlation.
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